chromosome 1q
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 39)

H-INDEX

37
(FIVE YEARS 5)

Blood ◽  
2022 ◽  
Author(s):  
Nikolaos Trasanidis ◽  
Alexia Katsarou ◽  
Kanagaraju Ponnusamy ◽  
Yao-An Shen ◽  
Ioannis V Kostopoulos ◽  
...  

Understanding the biological and clinical impact of copy number aberrations (CNA) for the development of precision therapies in cancer remains an unmet challenge. Genetic amplification of chromosome 1q (chr1q-amp) is a major CNA conferring adverse prognosis in several types of cancer, including in the blood cancer multiple myeloma (MM). Although several genes across chr1q portend high-risk MM disease, the underpinning molecular aetiology remains elusive. Here, with reference to the 3D chromatin structure, we integrate MM patient multi-omics datasets with genetic variables to obtain an associated clinical risk map across chr1q and to identify 103 adverse prognosis genes in chr1q-amp MM. Prominent amongst these genes, the transcription factor PBX1 is ectopically expressed by genetic amplification and epigenetic activation of its own preserved 3D regulatory domain. By binding to reprogrammed super-enhancers, PBX1 directly regulates critical oncogenic pathways and a FOXM1-dependent transcriptional programme. Together, PBX1 and FOXM1 activate a proliferative gene signature which predicts adverse prognosis across multiple types of cancer. Notably, pharmacological disruption of the PBX1-FOXM1 axis with existing agents (thiostrepton) and a novel PBX1 small-molecule inhibitor (T417) is selectively toxic against chr1q-amplified myeloma and solid tumour cells. Overall, our systems medicine approach successfully identifies CNA-driven oncogenic circuitries, links them to clinical phenotypes and proposes novel CNA-targeted therapy strategies in multiple myeloma and other types of cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan M. Tirier ◽  
Jan-Philipp Mallm ◽  
Simon Steiger ◽  
Alexandra M. Poos ◽  
Mohamed H. S. Awwad ◽  
...  

AbstractVirtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.


Author(s):  
Ka Young Lim ◽  
Kwanghoon Lee ◽  
Yumi Shim ◽  
Jin Woo Park ◽  
Hyunhee Kim ◽  
...  

AbstractAlthough ependymomas (EPNs) have similar histopathology, they are heterogeneous tumors with diverse immunophenotypes, genetics, epigenetics, and different clinical behavior according to anatomical locations. We reclassified 141 primary EPNs from a single institute with immunohistochemistry (IHC) and next-generation sequencing (NGS). Supratentorial (ST), posterior fossa (PF), and spinal (SP) EPNs comprised 12%, 41%, and 47% of our cohort, respectively. Fusion genes were found only in ST-EPNs except for one SP-EPN with ZFTA-YAP1 fusion, NF2 gene alterations were found in SP-EPNs, but no driver gene was present in PF-EPNs. Surrogate IHC markers revealed high concordance rates between L1CAM and ZFTA-fusion and H3K27me3 loss or EZHIP overexpression was used for PFA-EPNs. The 7% cut-off of Ki-67 was sufficient to classify EPNs into two-tiered grades at all anatomical locations. Multivariate analysis also delineated that a Ki-67 index was the only independent prognostic factor in both overall and progression-free survivals. The gain of chromosome 1q and CDKN2A/2B deletion were associated with poor outcomes, such as multiple recurrences or extracranial metastases. In this study, we propose a cost-effective schematic diagnostic flow of EPNs by the anatomical location, three biomarkers (L1CAM, H3K27me3, and EZHIP), and a cut-off of a 7% Ki-67 labeling index.


2021 ◽  
Author(s):  
Nikolaos Trasanidis ◽  
Alexia Katsarou ◽  
Kanagaraju Ponnusamy ◽  
Yao-An Shen ◽  
Ioannis V Kostopoulos ◽  
...  

Understanding the biological and clinical impact of copy number aberrations (CNA) in cancer remains an unmet challenge. Genetic amplification of chromosome 1q (chr1q-amp) is a major CNA conferring adverse prognosis in several cancers, including the blood cancer, multiple myeloma (MM). Although several chr1q genes portend high-risk MM disease, the underpinning molecular aetiology remains elusive. Here we integrate patient multi-omics datasets with genetic variables to identify 103 adverse prognosis genes in chr1q-amp MM. Amongst these, the transcription factor PBX1 is ectopically expressed by genetic amplification and epigenetic activation of its own preserved 3D regulatory domain. By binding to reprogrammed super-enhancers, PBX1 directly regulates critical oncogenic pathways, whilst in co-operation with FOXM1, activates a proliferative gene signature which predicts adverse prognosis across multiple cancers. Notably, pharmacological disruption of the PBX1-FOXM1 axis, including with a novel PBX1 inhibitor is selectively toxic against chr1q-amp cancer cells. Overall, our systems medicine approach successfully identifies CNA-driven oncogenic circuitries, links them to clinical phenotypes and proposes novel CNA-targeted therapy strategies in cancer.


2021 ◽  
Author(s):  
Xiaonan Xu ◽  
Kaizhen Wang ◽  
Olga Vera ◽  
Akanksha Verma ◽  
Olivier Elemento ◽  
...  

Deregulated gene expression through epigenetic, transcriptional, and copy number alterations is a major driver of melanoma progression and metastasis. In addition to serving as blueprints for translation, some mRNAs post-transcriptionally regulate gene expression by competitively sequestering miRNAs they share with other targets. Here we report that such mRNAs, termed competitive endogenous RNAs (ceRNAs), contribute to melanoma progression and metastasis. ceRNA predictions identified multiple candidate genes on chromosome 1q, which is recurrently amplified in melanoma. Genetic studies reveal that three of these mRNAs, CEP170, NUCKS1, and ZC3H11A, promote melanoma migration, invasion, and metastasis in a protein coding-independent and miRNA binding site-dependent manner. Interestingly, CEP170, NUCKS1, and ZC3H11A cooperate to elicit oncogenic effects by collectively impairing the tumor suppressor activity of 8 miRNAs on several pro-metastatic target genes. Finally, this complex chromosome 1q ceRNA network is evident in other cancer types, suggesting ceRNA network deregulation is a common driver of cancer progression.


Author(s):  
Xiao Hu ◽  
Cherng-Horng Wu ◽  
Janet M. Cowan ◽  
Raymond L. Comenzo ◽  
Cindy Varga

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2658-2658
Author(s):  
Aarif Ahsan ◽  
Ann Polonskaia ◽  
Chih-Chao Hsu ◽  
Chad C Bjorklund ◽  
Maria Ortiz Estevez ◽  
...  

Abstract Introduction: The Myeloma Genome Project (MGP) characterized the genomic landscape of patients with newly diagnosed multiple myeloma (NDMM) (Walker BA, et al. Blood 2018; 132[6]:587-597). Using a multi-omics unsupervised clustering approach, 12 molecularly-defined disease segments were identified (Ortiz M, et al. Blood 2018; 132[suppl 1]:3165). Here, we performed experimental validation of CDC28 Protein Kinase Regulatory Subunit 1B (CSK1B) that was identified as a putative target from the disease segment with poorest clinical outcome. CKS1B was selected for in-depth validation due to their role in cell cycle pathways associated with high-risk disease, biological mechanisms of chromosome 1q amplification and druggability. Methods: Association of CKS1B with outcomes was analyzed in NDMM patients, across relapses and with clinical outcome datasets from MGP and Mayo clinic. Inducible shRNAs of CKS1B and bromodomain containing protein 4 (BRD4, a member of the BET [bromodomain and extra terminal domain] family) were generated in MM cell lines. BRD4 and Aiolos ChIP-seq datasets were analyzed for binding on CKS1B gene. BRD4 inhibitors JQ1 and CC-90010 were utilized for inhibition studies in MM cell lines. Results: Higher expression of CKS1B was associated with significantly poorer PFS, OS, disease severity and relapse. Knock-down of CKS1B in MM cells led to a significant decrease in proliferation (P<0.001) and enhanced apoptosis in MM cell lines. BRD4-ChIP sequencing studies revealed that the expression of CKS1B was regulated by super-enhancer (SE) associated elements. As expected, two BRD4 inhibitors, JQ1 and CC-90010 and inducible BRD4 shRNAs downregulated the expression of CKS1B resulting in decreased proliferation, cell cycle arrest and apoptosis in MM cell lines. Furthermore, MM cell lines harboring chromosome 1q gain/amp showed higher sensitivity to BRD4 inhibition compared to cell lines with normal 1q copy number. Mechanistic studies revealed that BRD4inh and BRD4 shRNAs downregulated the expression of Aiolos and Ikaros in MM cell lines. Interestingly, Aiolos ChIP-sequencing studies demonstrated the binding of Aiolos at the transcriptional start sites of CKS1B with the transcriptional activation mark. The immunomodulatory agent (IMiD ®) pomalidomide (Pom) transcriptionally downregulated CKS1B in Pom-sensitive cells downstream of Aiolos, Ikaros degradation. Based on these mechanisms, IMiD agents, lenalidomide, Pom and the novel Cereblon E3 ligase modulating degrader (CELMoD ®) agent CC-92480 in combination with BRD4inh promoted a synergistic decrease in proliferation, cell cycle arrest and increase in apoptosis in both Pom-sensitive and -resistant cell lines. The combination of IMiD or novel CELMoD agent with BRD4inh also promoted deeper downregulation of CKS1B, Aiolos, Ikaros, c-Myc and survivin proteins with enhanced levels of apoptotic marker cleaved Caspase 3 as compared to single agents alone. Conclusions: In summary, we have identified CKS1B as a key target associated with poor outcome in MM patients. Translational studies suggest a profound downregulation of CKS1B and key pro-survival effector proteins following combination treatment with BRD4inh and IMiD agents/novel CELMoD agents resulting in synergistic anti-tumor effects. These data provide rationale for testing these agents in the clinic for high-risk and IMiD-relapsed patients. Figure: Changes in cell proliferation and protein levels of key signaling mediators were studied in K12PE cell line treated with increasing doses of Lenalidomide, Pomalidomide and CC-92480 in combination with JQ1. Figure 1 Figure 1. Disclosures Ahsan: BMS: Current Employment, Current equity holder in publicly-traded company. Polonskaia: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Hsu: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Bjorklund: BMS: Current Employment, Current equity holder in publicly-traded company. Ortiz Estevez: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Towfic: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Bahlis: Takeda: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Genentech: Consultancy; Pfizer: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria. Pourdehnad: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: No royalty. Flynt: BMS: Current Employment, Current equity holder in publicly-traded company. Ahsan: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties.


Blood ◽  
2021 ◽  
Author(s):  
Takahiko Yasuda ◽  
Masashi Sanada ◽  
Masahito Kawazu ◽  
Shinya Kojima ◽  
Shinobu Tsuzuki ◽  
...  

The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA; 15-39 years old, n = 193) and adults (40-64 years old, n = 161) with Philadelphia chromosome-negative B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with two novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified two novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.


2021 ◽  
pp. 100255
Author(s):  
Marcus Høy Hansen ◽  
Karen Juul-Jensen ◽  
Oriane Cédile ◽  
Stephanie Kavan ◽  
Michael Boe Møller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document