scholarly journals Profiling the binding sites of RNA-binding protein by LACE-seq

2021 ◽  
Author(s):  
Ruibao Su ◽  
Di Wang ◽  
Changchang Cao ◽  
Yuanchao Xue

Abstract RNA-binding proteins (RBPs) directly interact with various RNAs in living cells to regulate their processing, translation, and stability. Identifying the precise binding sites of RBPs is critical for appreciating their physiological or pathological roles in germline and early embryo development. Current methods typically need millions of cells to map RBP binding positions, which prevents us from appreciating the crucial role of RBPs in early development. Here, we present the LACE-seq method for unbiased mapping of RBP-binding sites at single-nucleotide resolution in fewer cells or even single oocytes. LACE-seq depends on RBP-mediated reverse transcription termination, and linear amplification of the cDNA ends for deep sequencing. To further promote its application, we describe a step-by-step protocol about how to construct a successful LACE-seq library.

RNA Biology ◽  
2017 ◽  
Vol 14 (12) ◽  
pp. 1756-1765 ◽  
Author(s):  
Elizabeth Ransey ◽  
Anders Björkbom ◽  
Victor S. Lelyveld ◽  
Przemyslaw Biecek ◽  
Lorena Pantano ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pavel Kovarik ◽  
Annika Bestehorn ◽  
Jeanne Fesselet

Regulated changes in mRNA stability are critical drivers of gene expression adaptations to immunological cues. mRNA stability is controlled mainly by RNA-binding proteins (RBPs) which can directly cleave mRNA but more often act as adaptors for the recruitment of the RNA-degradation machinery. One of the most prominent RBPs with regulatory roles in the immune system is tristetraprolin (TTP). TTP targets mainly inflammation-associated mRNAs for degradation and is indispensable for the resolution of inflammation as well as the maintenance of immune homeostasis. Recent advances in the transcriptome-wide knowledge of mRNA expression and decay rates together with TTP binding sites in the target mRNAs revealed important limitations in our understanding of molecular mechanisms of TTP action. Such orthogonal analyses lead to the discovery that TTP binding destabilizes some bound mRNAs but not others in the same cell. Moreover, comparisons of various immune cells indicated that an mRNA can be destabilized by TTP in one cell type while it remains stable in a different cell linage despite the presence of TTP. The action of TTP extends from mRNA destabilization to inhibition of translation in a subset of targets. This article will discuss these unexpected context-dependent functions and their implications for the regulation of immune responses. Attention will be also payed to new insights into the role of TTP in physiology and tissue homeostasis.


2017 ◽  
Author(s):  
Dmytro Ustianenko ◽  
Hua-Sheng Chiu ◽  
Sebastien M. Weyn-Vanhentenryck ◽  
Pavel Sumazin ◽  
Chaolin Zhang

AbstractLIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remains poorly understood, because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD)—which binds a GGAG-like element in the precursor—and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 family into Class I precursors with both CSD and ZKD binding sites and Class II precursors with ZKD but no CSD binding sites. LIN28 in vivo recognition—and subsequent 3′ uridylation and degradation—of Class I precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the effects of the LIN28 activation with potential implication in development and cancer.


2019 ◽  
Author(s):  
Anya V. Grozhik ◽  
Anthony O. Olarerin-George ◽  
Miriam Sindelar ◽  
Xing Li ◽  
Steven S. Gross ◽  
...  

AbstractN1-methyladenosine (m1A) was recently identified as a new mRNA modification based on its mapping to the 5’ UTRs of thousands of mRNAs with an m1A-binding antibody. More recent studies have confirmed the prevalence of m1A, while others have questioned it. To address this discrepancy, we mapped m1A using ultra-deep RNA-Seq datasets based on m1A-induced misincorporations during reverse transcription. Using this approach, we find m1A only in the mitochondrial MT-ND5 transcript. In contrast, when we mapped m1A antibody-binding sites at single-nucleotide resolution, we found binding to transcription start nucleotides in mRNA 5’ UTRs. Using different biochemical assays, we find that m1A is not present at these sites. Instead, we find that the m1A antibody exhibits m1A-independent binding to mRNA cap structures. We also tested a new and independently derived m1A antibody. We show that this m1A antibody lacks m7G cap-binding cross-reactivity, and notably does not map to 5’ UTRs in the transcriptome. Our data demonstrate that high-stoichiometry m1A sites are rare in the transcriptome and that previous mapping of m1A to mRNA 5’ UTRs are due to unintended binding of the m1A antibody to m7G cap structure in mRNA.


2019 ◽  
Author(s):  
Martin Lewinski ◽  
Yannik Bramkamp ◽  
Tino Köster ◽  
Dorothee Staiger

AbstractBackgroundRNA-binding proteins interact with their target RNAs at specific sites. These binding sites can be determined genome-wide through individual nucleotide resolution crosslinking immunoprecipitation (iCLIP). Subsequently, the binding sites have to be visualized. So far, no visualization tool exists that is easily accessible but also supports restricted access so that data can be shared among collaborators.ResultsHere we present SEQing, a customizable interactive dashboard to visualize crosslink sites on target genes of RNA-binding proteins that have been obtained by iCLIP. Moreover, SEQing supports RNA-seq data that can be displayed in a diffrerent window tab. This allows, e.g. crossreferencing the iCLIP data with genes differentially expressed in mutants of the RBP and thus obtain some insights into a potential functional relevance of the binding sites. Additionally, detailed information on the target genes can be incorporated in another tab.ConclusionSEQing is written in Python3 and runs on Linux. The web-based access makes iCLIP data easily accessible, even with mobile devices. SEQing is customizable in many ways and has also the option to be secured by a password. The source code is available at https://github.com/malewins/SEQing.


2016 ◽  
Vol 11 (3) ◽  
pp. 616-616 ◽  
Author(s):  
Michael J Moore ◽  
Chaolin Zhang ◽  
Emily Conn Gantman ◽  
Aldo Mele ◽  
Jennifer C Darnell ◽  
...  

2021 ◽  
Author(s):  
Marc Horlacher ◽  
Svitlana Oleshko ◽  
Yue Hu ◽  
Mahsa Ghanbari ◽  
Ernesto Elorduy Vergara ◽  
...  

It is well known that viruses make extensive use of the host cell's machinery, hijacking it for the purpose of viral replication and interfere with the activity of master regulatory proteins - including RNA binding proteins (RBPs). RBPs recognize and bind RNA molecules to control several steps of cellular RNA metabolism, such as splicing, transcript stability, translation and others, and recognize their targets by means of sequence or structure motifs. Host RBPs are critical factors for viral replication, especially for RNA viruses, and have been shown to influence viral RNA stability, replication and escape of host immune response. While current research efforts have been centered around identifying mechanisms of host cell-entry, the role of host RBPs in the context of SARS-CoV-2 replication remains poorly understood. Few experimental studies have started mapping the SARS-CoV-2 RNA-protein interactome in infected human cells, but they are limited in the resolution and exhaustivity of their output. On the other hand, computational approaches enable screening of large numbers of human RBPs for putative interactions with the viral RNA, and are thus crucial to prioritize candidates for further experimental investigation. Here, we investigate the role of RBPs in the context of SARS-CoV-2 by constructing a first single-nucleotide \textit{in silico} map of human RBP / viral RNA interactions by using deep learning models trained on RNA sequences. Our framework is based on Pysster and DeepRiPe, two deep learning method which use a convolutional neural network to learn sequence-structure preferences of a specific RBP. Models were trained using eCLIP and PAR-CLIP datasets for >150 RBP generated on human cell lines and applied cross-species to predict the propensity of each RBP to bind the SARS-CoV-2 genome. After extensive validation of predicted binding sites, we generate RBP binding profiles across different SARS-CoV-2 variants and 6 other betacoronaviruses. We address the questions of (1) conservation of binding between pathogenic betacoronaviruses, (2) differential binding across viral strains and (3) gain and loss of binding events in novel mutants which can be linked to disease severity and spread in the population. In addition, we explore the specific pathways hijacked by the virus, by integrating host factors linked to these virus-binding RBPs through protein-protein interaction networks or genome wide CRISPR screening. We believe that identifying viral RBP binding sites will give valuable insights into the mechanisms of host-virus interaction, thus giving us a deeper understanding of the life cycle of SARS-CoV-2 but also opening new avenues for the development of new therapeutics.


Sign in / Sign up

Export Citation Format

Share Document