scholarly journals Functional and Mechanistic Characterization of an Enzyme Family Combining Bioinformatics and High-Throughput Microfluidics

Author(s):  
Michal Vasina ◽  
Pavel Vanacek ◽  
Jiri Hon ◽  
David Kovar ◽  
Hanka Faldynova ◽  
...  

Abstract Next-generation sequencing doubles genomic databases every 2.5 years. The accumulation of sequence data raises the need to speed up functional analysis. Herein, we present a pipeline integrating bioinformatics and microfluidics and its application for high-throughput mining of novel haloalkane dehalogenases. We employed bioinformatics to identify 2,905 putative dehalogenases and selected 45 representative enzymes, of which 24 were produced in soluble form. Droplet-based microfluidics accelerates subsequent experimental testing up to 20,000 reactions per day while achieving 1,000-fold lower protein consumption. This resulted in doubling the dehalogenation “toolbox" characterized over three decades, yielding biocatalysts surpassing the efficiency of currently available enzymes. Combining microfluidics with modern global data analysis provided precious mechanistic information related to the high catalytic efficiency of new variants. This pipeline applied to other enzyme families can accelerate the identification of biocatalysts for industrial applications as well as the collection of high-quality data for machine learning.

2021 ◽  
Author(s):  
Pavel Vanacek ◽  
Michal Vasina ◽  
Jiri Hon ◽  
David Kovar ◽  
Hana Faldynova ◽  
...  

<p>Next-generation sequencing technologies enable doubling of the genomic databases every 2.5 years. Collected sequences represent a rich source of novel biocatalysts. However, the rate of accumulation of sequence data exceeds the rate of functional studies, calling for acceleration and miniaturization of biochemical assays. Here, we present an integrated platform employing bioinformatics, <a></a><a>microanalytics, </a>and microfluidics and its application for exploration of unmapped sequence space, using haloalkane dehalogenases as model enzymes. First, we employed bioinformatic analysis for identification of 2,905 putative dehalogenases and rational selection of 45 representative enzymes. Second, we expressed and experimentally characterized 24 enzymes showing sufficient solubility for microanalytical and microfluidic testing. Miniaturization increased the throughput to 20,000 reactions per day with 1000-fold lower protein consumption compared to conventional assays. A single run of the platform doubled dehalogenation toolbox of family members characterized over three decades. Importantly, the dehalogenase activities of nearly one-third of these novel biocatalysts far exceed that of most published HLDs. Two enzymes showed unusually narrow substrate specificity, never before reported for this enzyme family. The strategy is generally applicable to other enzyme families, paving the way towards the acceleration of the process of identification of novel biocatalysts for industrial applications but also for the collection of homogenous data for machine learning. The automated <i>in silico</i> workflow has been released as a user-friendly web-tool EnzymeMiner: https://loschmidt.chemi.muni.cz/enzymeminer/.</p>


2021 ◽  
Author(s):  
Pavel Vanacek ◽  
Michal Vasina ◽  
Jiri Hon ◽  
David Kovar ◽  
Hana Faldynova ◽  
...  

<p>Next-generation sequencing technologies enable doubling of the genomic databases every 2.5 years. Collected sequences represent a rich source of novel biocatalysts. However, the rate of accumulation of sequence data exceeds the rate of functional studies, calling for acceleration and miniaturization of biochemical assays. Here, we present an integrated platform employing bioinformatics, <a></a><a>microanalytics, </a>and microfluidics and its application for exploration of unmapped sequence space, using haloalkane dehalogenases as model enzymes. First, we employed bioinformatic analysis for identification of 2,905 putative dehalogenases and rational selection of 45 representative enzymes. Second, we expressed and experimentally characterized 24 enzymes showing sufficient solubility for microanalytical and microfluidic testing. Miniaturization increased the throughput to 20,000 reactions per day with 1000-fold lower protein consumption compared to conventional assays. A single run of the platform doubled dehalogenation toolbox of family members characterized over three decades. Importantly, the dehalogenase activities of nearly one-third of these novel biocatalysts far exceed that of most published HLDs. Two enzymes showed unusually narrow substrate specificity, never before reported for this enzyme family. The strategy is generally applicable to other enzyme families, paving the way towards the acceleration of the process of identification of novel biocatalysts for industrial applications but also for the collection of homogenous data for machine learning. The automated <i>in silico</i> workflow has been released as a user-friendly web-tool EnzymeMiner: https://loschmidt.chemi.muni.cz/enzymeminer/.</p>


2009 ◽  
Vol 25 (19) ◽  
pp. 2607-2608 ◽  
Author(s):  
M. Morgan ◽  
S. Anders ◽  
M. Lawrence ◽  
P. Aboyoun ◽  
H. Pages ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sanghoon Kang ◽  
Jorge L. M. Rodrigues ◽  
Justin P. Ng ◽  
Terry J. Gentry

2021 ◽  
Author(s):  
Gang Liu

Abstract Background The AA9 (auxiliary activities) family of lytic polysaccharide monooxygenases (AA9 LPMOs) are ubiquitous and diverse group of enzymes amongst the fungal kingdom. They catalyze the oxidative cleavage of glycosidic bonds in lignocellulose and exhibit great potential for secondary biorefinery applications. Screening of AA9 LPMOs for desirable properties is crucial for biorefinery industrial applications. However, robust, high-throughput and direct method for AA9 LPMO activity assay, which is prerequisite for screening of LPMOs with excellent properties, is still lacking. Here, we have described a gluco-oligosaccharide oxidase (GOOX) based horseradish peroxidase (HRP) colorimetric method for AA9 LPMO activity assay. Results We cloned and expressed a GOOX gene from Sarocladium strictum in Trichoderma reesei, purified the recombinant SsGOOX, validated its properties, and set up a SsGOOX based HRP colorimetric method for cellobiose concentration assay. Then we expressed two AA9 LPMOs from Thielavia terrestris, TtAA9F and TtAA9G in T. reesei, purified the recombinant proteins, and analyzed their product profiles and regioselectivity towards phosphoric acid swollen cellulose (PASC). TtAA9F was characterized as a C1 type (class 1) LPMO, while TtAA9G was characterized as a C4 type (class 2) LPMO. Finally, the SsGOOX based HRP colorimetric method was used to quantify the total concentration of reducing lytic products from LPMO reaction, and consequently, the activities of both C1 and C4 types of LPMOs were analyzed. These LPMOs could be effectively analyzed with limits of detection (LoDs) lower than 30 nmol/L, and standard curves between A515 and LPMO concentrations with determination coefficients greater than 0.994 were obtained. Conclusions A novel, sensitive and accurate assay method that directly targets the main activity of both C1 and C4 type of AA9 LPMOs was established. This method is easy to use and could be performed on a microtiter plate ready for high-throughput screening of AA9 LPMOs with high properties.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Rebecca Co ◽  
Laura A. Hug

ABSTRACT Improved sequencing technologies and the maturation of metagenomic approaches allow the identification of gene variants with potential industrial applications, including cellulases. Cellulase identification from metagenomic environmental surveys is complicated by inconsistent nomenclature and multiple categorization systems. Here, we summarize the current classification and nomenclature systems, with recommendations for improvements to these systems. Addressing the issues described will strengthen the annotation of cellulose-active enzymes from environmental sequence data sets—a rapidly growing resource in environmental and applied microbiology.


2014 ◽  
Vol 490-491 ◽  
pp. 757-762
Author(s):  
Guo Li Ji ◽  
Long Teng Chen ◽  
Liang Liang Chen

This paper proposed a way of two-level parallel alignment based on sequence parallel vectorization with GPU acceleration on the Fermi architecture, which integrates sequence parallel vectorization, parallel k-means clustering approximate alignment and parallel Smith-Waterman algorithm. The method converts sequence alignment into vector alignment by first. Then it uses k-means alignment to divide sequences into several groups and reduce the size of sequence data. The expected accurate alignment result is achieved using parallel Smith-Waterman algorithm. The high-throughput mouse T-cell receptor (TCR) sequences were used to validate the proposed method. Under the same hardware condition, comparing to serial Smith-Waterman algorithm and CUDASW++2.0 algorithm, our method is the most efficient alignment algorithm with high alignment accuracy.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonio A. Ginart ◽  
Joseph Hui ◽  
Kaiyuan Zhu ◽  
Ibrahim Numanagić ◽  
Thomas A. Courtade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document