scholarly journals Coarse-Grained Modeling of The Calcium, Sodium, Magnesium And Potassium Cations Interacting With Proteins

Author(s):  
Agnieszka Gabriela Lipska ◽  
Anna Maria Antoniak ◽  
Patryk Wesołowski ◽  
Alan Warszawski ◽  
Sergey A Samsonov ◽  
...  

Abstract Metal ions play important biological roles e.g.: activation or deactivation of enzymatic reactions and signal transduction. Moreover, they can stabilize protein structure, or even be actively involved in the protein folding process. Therefore, accurate treatment of the ions is crucial to model and investigate biological phenomena properly. In this work the coarse-grained UNRES (UNited RESidue) force field was extended to include the interactions between proteins and four alkali or alkaline earth metal cations of biological significance, i.e. calcium, magnesium, sodium and potassium. Additionally, chloride anions were introduced as counter-ions. Parameters were derived from all-atom simulations and incorporate water in an implicit manner. The new force field was tested on the set of the proteins and was able to reproduce the ion-binding preferences.

2017 ◽  
Vol 113 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Jaakko J. Uusitalo ◽  
Helgi I. Ingólfsson ◽  
Siewert J. Marrink ◽  
Ignacio Faustino

2018 ◽  
Vol 39 (28) ◽  
pp. 2360-2370 ◽  
Author(s):  
Adam K. Sieradzan ◽  
Artur Giełdoń ◽  
Yanping Yin ◽  
Yi He ◽  
Harold A. Scheraga ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2019 ◽  
Vol 123 (37) ◽  
pp. 7829-7839
Author(s):  
Karolina Ziȩba ◽  
Magdalena Ślusarz ◽  
Rafał Ślusarz ◽  
Adam Liwo ◽  
Cezary Czaplewski ◽  
...  

2005 ◽  
Vol 83 (5) ◽  
pp. 433-450 ◽  
Author(s):  
Ragai K Ibrahim

This review highlights original contributions by the author to the field of flavonoid biochemistry during his research career of more than four decades. These include elucidation of novel aspects of some of the common enzymatic reactions involved in the later steps of flavonoid biosynthesis, with emphasis on methyltransferases, glucosyltransferases, sulfotransferases, and an oxoglutarate-dependent dioxygenase, as well as cloning, and inferences about phylogenetic relationships, of the genes encoding some of these enzymes. The three-dimensional structure of a flavonol O-methyltransferase was studied through homology-based modeling, using a caffeic acid O-methyltransferase as a template, to explain their strict substrate preferences. In addition, the biological significance of enzymatic prenylation of isoflavones, as well as their role as phytoanticipins and inducers of nodulation genes, are emphasized. Finally, the potential application of knowledge about the genes encoding these enzyme reactions is discussed in terms of improving plant productivity and survival, modification of flavonoid profiles, and the search for new compounds with pharmaceutical and (or) nutraceutical value.Key words: flavonoid enzymology, metabolite localization, gene cloning, 3-D structure, phylogeny.


2017 ◽  
Vol 146 (5) ◽  
pp. 054501 ◽  
Author(s):  
Julian Michalowsky ◽  
Lars V. Schäfer ◽  
Christian Holm ◽  
Jens Smiatek

Author(s):  
Mohammad Poursina ◽  
Jeremy Laflin ◽  
Kurt S. Anderson

In molecular simulations, the dominant portion of the computational cost is associated with force field calculations. Herein, we extend the approach used to approximate long range gravitational force and the associated moment in spacecraft dynamics to the coulomb forces present in coarse grained biopolymer simulations. We approximate the resultant force and moment for long-range particle-body and body-body interactions due to the electrostatic force field. The resultant moment approximated here is due to the fact that the net force does not necessarily act through the center of mass of the body (pseudoatom). This moment is considered in multibody-based coarse grain simulations while neglected in bead models which use particle dynamics to address the dynamics of the system. A novel binary divide and conquer algorithm (BDCA) is presented to implement the force field approximation. The proposed algorithm is implemented by considering each rigid/flexible domain as a node of the leaf level of the binary tree. This substructuring strategy is well suited to coarse grain simulations of chain biopolymers using an articulated multibody approach.


2018 ◽  
Vol 122 (39) ◽  
pp. 9161-9177 ◽  
Author(s):  
Sadia Rahman ◽  
Olga Lobanova ◽  
Guadalupe Jiménez-Serratos ◽  
Carlos Braga ◽  
Vasilios Raptis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document