scholarly journals DUOX2 is a Generator of ROS in the Ovary and a Potential Mediator of Ovulation

Author(s):  
Gil M Yerushalmi ◽  
Yuval Yung ◽  
Oranit Saiagh Dayan ◽  
Ettie Maman ◽  
Sarit Avraham ◽  
...  

Abstract Background: Ovulation is triggered by the preovulatory surge of the pituitary luteinizing hormone (LH). LH/hCG induction of reactive oxygen species (ROS) is required for successful ovulation. H2O2, one of ROS species, was shown to fully mimic the effect of LH/hCG in mice ovulation. However, the molecular process that generates H2O2 in the ovary during ovulation remains largely unknown. DUOX2, a member of the NOX/DUOX family of NADPH oxidase, is capable of generating H2O2. Results: Using global transcriptome RNAseq, we identified that DUOX2 is one of the transcripts that was markedly upregulated in granulosa cells during ovulation. Treatment with human chorionic gonadotropin (hCG), an ovulatory trigger, significantly increases the expression of DUOX2 mRNA and protein in human GCs both in vivo and in vitro. hCG-induced up-regulation of DUOX2 is mediated by the cAMP-PKA and the PKC pathway. A functional test reveals that DUOX2 chemical inhibitor, Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, decreased H2O2 levels in MGCs (Mural Granulosa Cells) treated with hCG. The inhibition of H2O2 by DPI suggests that DUOX2 activity is required for hCG-induced elevation of extracellular H2O2 in MGCs. In vivo treatment of mice with DPI significantly decreases the number of ovulated oocytes and markedly attenuates the expression of key ovulatory genes. These results support the putative role of DUOX2 in ovulation. Conclusions: DUOX2 is a ROS generator during the ovulatory process and is involved in the LH/hCG-induced signaling cascades leading to ovulation. Treatment with DUOX2 inhibitors may affect late folliculogenesis and ovulation and thus may serve for fertility control.

2012 ◽  
Vol 163 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Elizabeth D. Hood ◽  
Colin F. Greineder ◽  
Chandra Dodia ◽  
Jingyan Han ◽  
Clementina Mesaros ◽  
...  

2014 ◽  
Vol 399 (1-2) ◽  
pp. 167-178 ◽  
Author(s):  
Xiaoran Li ◽  
Jianzhong Lu ◽  
Panfeng Shang ◽  
Junsheng Bao ◽  
Zhongjin Yue

2021 ◽  
Vol 22 (22) ◽  
pp. 12277
Author(s):  
En-Shao Liu ◽  
Nai-Ching Chen ◽  
Tzu-Ming Jao ◽  
Chien-Liang Chen

Medial vascular calcification has emerged as a key factor contributing to cardiovascular mortality in patients with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs) with osteogenic transdifferentiation play a role in vascular calcification. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors reduce reactive oxygen species (ROS) production and calcified-medium–induced calcification of VSMCs. This study investigates the effects of dextromethorphan (DXM), an NADPH oxidase inhibitor, on vascular calcification. We used in vitro and in vivo studies to evaluate the effect of DXM on artery changes in the presence of hyperphosphatemia. The anti-vascular calcification effect of DXM was tested in adenine-fed Wistar rats. High-phosphate medium induced ROS production and calcification of VSMCs. DXM significantly attenuated the increase in ROS production, the decrease in ATP, and mitochondria membrane potential during the calcified-medium–induced VSMC calcification process (p < 0.05). The protective effect of DXM in calcified-medium–induced VSMC calcification was not further increased by NADPH oxidase inhibitors, indicating that NADPH oxidase mediates the effect of DXM. Furthermore, DXM decreased aortic calcification in Wistar rats with CKD. Our results suggest that treatment with DXM can attenuate vascular oxidative stress and ameliorate vascular calcification.


2013 ◽  
Vol 63 (6) ◽  
pp. 583-593 ◽  
Author(s):  
Ana Paula Oliveira Ferreira ◽  
Fernanda Silva Rodrigues ◽  
Iuri Domingues Della-Pace ◽  
Bibiana Castagna Mota ◽  
Sara Marchesan Oliveira ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 482
Author(s):  
Seul Gee Lee ◽  
Jaeok Lee ◽  
Kyung Min Kim ◽  
Kee-In Lee ◽  
Yun Soo Bae ◽  
...  

In a previous study, the specific NOX1/2/4 inhibitor Ewha-18278 was confirmed as a possible treatment for osteoporosis both in vitro and in vivo. Here, we investigated the pharmacokinetics (PK) of the compound by intravenous (IV) and oral administrations to rats. Dimethyl sulfoxide (DMSO)-based and diazepam injection-based formulations were used to dissolve the compound. In the latter formulation applicable to humans, the changes in PK parameters were monitored at two different concentrations (1 mg/mL and 2 mg/mL). The area under the plasma concentration-time curve from zero time to infinity (AUCinf) of Ewha-18278 was highest in the DMSO-based formulation (2 mg/mL). Also, the concentration was increased 1.6-fold at the low concentration of the diazepam injection-based formulation compared to the high concentration. There was no statistical significance in the AUCinf of the compound between DMSO-based formulation (2 mg/mL) and diazepam injection-based formulation (1 mg/mL). These results suggest that Ewha-18278 can be delivered to humans by both IV and oral routes. In addition, the diazepam injection-based formulation of Ewha-18278 appears to be a suitable candidate for dosage development for future toxicity test and clinical trial.


Sign in / Sign up

Export Citation Format

Share Document