Robust Asynchronous Fuzzy Predictive Fault-Tolerant Tracking Control for Nonlinear Multiphase Batch Processes with Time-Varying Tracking Trajectories

Author(s):  
Hui Li ◽  
Shiqi Wang ◽  
Huiyuan shi ◽  
Chengli Su ◽  
Ping Li

Abstract A T-S model-dependent robust asynchronous fuzzy predictive fault-tolerant tracking control scheme is developed for nonlinear multiphase batch processes with time-varying tracking trajectories and actuator faults. Firstly, considering the influence of the mismatch between the previous phase state and the current phase controller during the switching, a T-S fuzzy switching model including the match and mismatch case is established. Depending on the fuzzy switching model, a robust fuzzy predictive fault-tolerant tracking controller is designed by considering the situation whether the model rules correspond to the controller rules. Secondly, using the related theories and methods, the system stability conditions presented by the linear matrix inequality considering the above conditions are provided to guarantee the stability of the system. By solving these stability conditions, the T-S fuzzy control law gain of each phase, the minimum running time of each match case and the maximum running time of each mismatch case are obtained. Then, through the maximum running time, the strategy of the switching signal in advance is adopted to avoid the occurrence of asynchronous switching, so as to ensure that the system can operate stably. Finally, the simulation results verify that the designed controller is effective and feasible.

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 89 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

With the rapid development of computer science and information and communication technology (ICT), increasingly intelligent, and complex systems have been applied to industries as well as human life. Fault-tolerant control (FTC) has, therefore, become one of the most important topics attracting attention from both engineers and researchers to maintain system performances when faults occur. The ultimate goal of this study was to develop a sensor fault-tolerant control (SFTC) to enhance the robust position tracking control of a class of electro-hydraulic actuators called mini motion packages (MMPs), which are widely used for applications requiring large force-displacement ratios. First, a mathematical model of the MMP system is presented, which is then applied in the position control process of the MMP system. Here, a well-known proportional, integrated and derivative (PID) control algorithm is employed to ensure the positional response to the reference position. Second, an unknown input observer (UIO) is designed to estimate the state vector and sensor faults using a linear matrix inequality (LMI) optimization algorithm. Then an SFTC is used to deal with sensor faults of the MMP system. The SFTC is formed of the fault detection and the fault compensation with the goal of determining the location, time of occurrence, and magnitude of the faults in the fault signal compensation process. Finally, numerical simulations were run to demonstrate the superior performance of the proposed approach compared to traditional tracking control.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Xinghua Liu ◽  
Hongsheng Xi

The exponential synchronization and sampled-data controller problem for a class of neutral complex dynamical networks (NCDNs) with Markovian jump parameters, partially unknown transition rates and delays, is investigated in this paper. Both the discrete and neutral delays are considered to be interval mode dependent and time varying, while the sampling period is assumed to be time varying and bounded. Based on a new augmented stochastic Lyapunov functional, the delay-range-dependent and rate-dependent exponential stability conditions for the closed-loop error system are obtained by the Lyapunov-Krasovskii stability theory and reciprocally convex lemma. Then according to the proposed exponential stability conditions, the sampled-data synchronization controllers are designed in terms of the solution to linear matrix inequalities that can be solved effectively by using Matlab. Finally, numerical examples are given to demonstrate the feasibility and effectiveness of the proposed methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xinghua Liu ◽  
Hongsheng Xi

The delay-range-dependent stochastic stability for uncertain neutral Markovian jump systems with interval time-varying delays is studied in this paper. The uncertainties under consideration are assumed to be time varying but norm bounded. To begin with the nominal systems, a novel augmented Lyapunov functional which contains some triple-integral terms is introduced. Then, by employing some integral inequalities and the nature of convex combination, some less conservative stochastic stability conditions are presented in terms of linear matrix inequalities without introducing any free-weighting matrices. Finally, numerical examples are provided to demonstrate the effectiveness and to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chaoyang Dong ◽  
Aojia Ma ◽  
Qing Wang ◽  
Zhaolei Wang

This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS). Firstly, considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the mean (GUAS-M) and desired weightedl2performance are guaranteed by combining the switched parameter dependent Lyapunov functional method with the average dwell time (ADT) method, and the feasible conditions for the fault-tolerant tracking controllers are obtained in the form of linear matrix inequalities (LMIs). Finally, the performance of the proposed approach is verified on a highly maneuverable technology (HiMAT) vehicle’s tracking control problem. Simulation results show the effectiveness of the proposed method.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Pin-Lin Liu

In this paper, the problems of determining the robust exponential stability and estimating the exponential convergence rate for recurrent neural networks (RNNs) with parametric uncertainties and time-varying delay are studied. The relationship among the time-varying delay, its upper bound, and their difference is taken into account. The developed stability conditions are in terms of linear matrix inequalities (LMIs) and the integral inequality approach (IIA), which can be checked easily by recently developed algorithms solving LMIs. Furthermore, the proposed stability conditions are less conservative than some recently known ones in the literature, and this has been demonstrated via four examples with simulation.


Sign in / Sign up

Export Citation Format

Share Document