scholarly journals GPER/β-Alanine Positive Interaction in The Dorsal Root Ganglion Uncovers Potential Mechanisms: Mediating Continuous Neuronal Sensitisation and Neuroinflammation Responses in Neuropathic Pain

Author(s):  
Zhenzhen Xu ◽  
Wanli Xie ◽  
Yiqi Feng ◽  
Yanting Wang ◽  
Yuyao He ◽  
...  

Abstract Background: The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing are still unknown. Increasing evidence suggests that estrogen sex differences play a role in pain sensitivity, but few studies focused on the role of estrogen receptor which maybe an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of oestrogen receptors in nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods: We used a class of estrogen receptors antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we applied genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitisation and neuroinflammation responses in neuropathic pain. The excitability of DRG neurons was detected using the patch clamp technique. Immunohistochemistry, Western blotting, qPCR and behavioral testing were used to assess the expressions, cellular distributions, and actions of main receptor and its related signaling molecules.Results: Increasing the expression and function of G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), in the DRG, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitisation. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by downregulating IL-1β and IL-6 expression as well as restoring GABAα2 expression simultaneously. Additionally, the positive interaction between GPER and β-alanine, β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion: GPER activation in the DRG causes a positive interaction of β-alanine with IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG may prevent neuropathic pain development.

2020 ◽  
Vol 13 (1) ◽  
pp. 35-41
Author(s):  
Alfonso Papa ◽  
Elisabetta Saracco ◽  
Maria Teresa Di Dato ◽  
Pietro Buonavolontà ◽  
Anna Maria Salzano ◽  
...  

Objectives: The dorsal root ganglion (DRG) is involved in the transduction of pain signals to the central nervous system (CNS) and undergoes a number of physiopathological changes during chronic pain. The purpose of this data collection was to evaluate the long-term safety and efficacy of DRG stimulation for the treatment of chronic pain and its impact on functional aspects. Materials and Methods: Forty-four subjects with non-reactive chronic neuropathic pain syndrome were implanted with DRG stimulation. Patients were evaluated at baseline as well as at 15, and 30 days, and at 3, 6, 12, 24, 36 and 48 months after medical intervention/surgery using the Visual Analogic Scale (VAS), which measures pain intensity, and the Oswestry Scale, for the estimation of disability (ODI). Results: After four years of simulation, VAS and ODI showed a statistically significant reduction throughout the follow-up period. The average pain relief obtained after 48 months of treatment was 74.1% ± 3.4. Conclusion: The results of this data collection demonstrate the feasibility of DRG stimulation, the correspondence between the clinical indications at the DRG implant and what is commonly found in the literature on this technique.(18,20) Patients defined as clinical responders to DRG stimulation and so implanted with definitive IPG showed a sustained and long term efficacy. Eight patients had previously been implanted with a traditional SCS without any clinically relevant efficacy; they were then explained for unsatisfactory results. Six of them (75%) were later implanted with DRG, with long-term effectiveness. Another advantage of this therapy is the absence of positional effects and lead migration. The adverse events proved to be independent of the anatomical level of insertion; moreover, this series of cases show a lower incidence of lead migration than reported in the literature. In summary, DRGs have been ignored for too long, probably due to the technical difficulty of reaching their deep, almost extra-spinal anatomical position.


Author(s):  
Vishwanath Sankarasubramanian ◽  
Srinivas Chiravuri ◽  
Ehsan Mirzakhalili ◽  
Carlos J. Anaya ◽  
John Ryan Scott ◽  
...  

Author(s):  
Xiaohua Fan ◽  
Chuanwei Wang ◽  
Junting Han ◽  
Xinli Ding ◽  
Shaocan Tang ◽  
...  

2017 ◽  
Vol 14 (6) ◽  
pp. 654-660 ◽  
Author(s):  
Steven M Falowski ◽  
Andreas Dianna

Abstract BACKGROUND Dorsal root ganglion stimulation is a neuromodulation therapy used for chronic neuropathic pain. Typically, patients are awakened intraoperatively to confirm adequate placement. OBJECTIVE To determine whether neuromonitoring can confirm placement in an asleep patient. METHODS This is a prospective analysis of 12 leads placed in 6 patients. Lead confirmation was confirmed by awake intraoperative testing, as well as asleep testing utilizing neuromonitoring. Patients were used as their own control. Sensory and motor thresholds for each patient with awake and asleep neuromonitoring testing were recorded. Intraoperative impedance and postoperative programming were also recorded. RESULTS In each patient, paresthesias were generated prior to motor contractions in the awake patient. For each patient, somatosensory evoked potential responses were present after lowering below the dropout threshold of electromyogram responses with neuromonitoring. There were varying degrees of separation in the thresholds that did not appear to be consistent across level or diagnosis. Smaller degrees of separation between thresholds during awake testing also held true in the asleep patient. This was further confirmed with postoperative programming. Impedances did not alter the separation in thresholds or amount of stimulation required for responses. One patient was combative during awake testing, and therefore motor thresholds were not obtained. This same patient was determined to have a ventral placement, confirmed with awake and asleep neuromonitoring testing. CONCLUSION This series demonstrates that the proposed neuromonitoring protocol can be used in an asleep patient to assure proper positioning of the dorsal root ganglion electrode in the dorsal foramen by generating somatosensory evoked potential responses in the absence of electromyogram responses.


Author(s):  
Edward C. Emery ◽  
Patrik Ernfors

Primary sensory neurons of the dorsal root ganglion (DRG) respond and relay sensations that are felt, such as those for touch, pain, temperature, itch, and more. The ability to discriminate between the various types of stimuli is reflected by the existence of specialized DRG neurons tuned to respond to specific stimuli. Because of this, a comprehensive classification of DRG neurons is critical for determining exactly how somatosensation works and for providing insights into cell types involved during chronic pain. This article reviews the recent advances in unbiased classification of molecular types of DRG neurons in the perspective of known functions as well as predicted functions based on gene expression profiles. The data show that sensory neurons are organized in a basal structure of three cold-sensitive neuron types, five mechano-heat sensitive nociceptor types, four A-Low threshold mechanoreceptor types, five itch-mechano-heat–sensitive nociceptor types and a single C–low-threshold mechanoreceptor type with a strong relation between molecular neuron types and functional types. As a general feature, each neuron type displays a unique and predicable response profile; at the same time, most neuron types convey multiple modalities and intensities. Therefore, sensation is likely determined by the summation of ensembles of active primary afferent types. The new classification scheme will be instructive in determining the exact cellular and molecular mechanisms underlying somatosensation, facilitating the development of rational strategies to identify causes for chronic pain.


2014 ◽  
Vol 9 (12) ◽  
pp. 1204
Author(s):  
Wenting Ma ◽  
Ling Jiao ◽  
Tengda Zhang ◽  
Huixing Wang ◽  
Wenyi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document