Silent Speech Command Word Recognition Using Stepped Frequency Continuous Wave Radar

Author(s):  
Christoph Wagner ◽  
Petr Schaffer ◽  
Pouriya Amini Digehsara ◽  
Michael Bärhold ◽  
Dirk Plettemeier ◽  
...  

Abstract Recovering speech in the absence of the acoustic speech signal itself, i.e., silent speech, holds great potential for restoring or enhancing oral communication in those who lost it. Radar is a relatively unexplored silent speech sensing modality, even though it has the advantage of being fully non-invasive. We therefore built a custom stepped frequency continuous wave radar hardware to measure the changes in the transmission spectra during speech between three antennas, located on both cheeks and the chin with a measuring frequency of 100 Hz. We then recorded a command word corpus of 40 phonetically balanced, two-syllable German words and the German digits zero to nine for two individual speakers and evaluated both the speaker-dependent multi-session and inter-session recognition accuracies on this 50-word corpus using a bidirectional long-short term memory network. We obtained recognition accuracies of 99.17 % and 88.87 % for the speaker-dependent multi-session and inter-session accuracy, respectively. These results show that the transmission spectra are very well suited to discriminate individual words from one another, even across different sessions, which is one of the key challenges for fully non-invasive silent speech interfaces.

2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Rafael Alonso ◽  
José María García del Pozo ◽  
Samuel T. Buisán ◽  
José Adolfo Álvarez

Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


2021 ◽  
Author(s):  
Jennifer C. Dela Cruz ◽  
Francis Anjo C. Javier ◽  
Charlotte C. Puyat ◽  
Jonathan C. Ibera

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sven Schellenberger ◽  
Kilin Shi ◽  
Tobias Steigleder ◽  
Anke Malessa ◽  
Fabian Michler ◽  
...  

Abstract Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained.


2019 ◽  
Vol 67 (12) ◽  
pp. 5396-5405 ◽  
Author(s):  
Wei-Chih Su ◽  
Mu-Cyun Tang ◽  
Rezki El Arif ◽  
Tzyy-Sheng Horng ◽  
Fu-Kang Wang

Sign in / Sign up

Export Citation Format

Share Document