scholarly journals Continuation Newton methods with deflation techniques and  quasi-genetic evolution for global optimization problems

Author(s):  
Xin-long Luo ◽  
Hang Xiao

Abstract The global minimum point of an optimization problem is of interest in engineering fields and it is difficult to be solved, especially for a nonconvex large-scale optimization problem. In this article, we consider the continuation Newton method with the deflation technique and the quasi-genetic evolution for this problem. Firstly, we use the continuation Newton method with the deflation technique to find the stationary points from several determined initial points as many as possible. Then, we use those found stationary points as the initial evolutionary seeds of the quasi-genetic algorithm. After it evolves into several generations, we obtain a suboptimal point of the optimization problem. Finally, we use the continuation Newton method with this suboptimal point as the initial point to obtain the stationary point, and output the minimizer between this final stationary point and the found suboptimal point of the quasi-genetic algorithm. Finally, we compare it with the multi-start method (the built-in subroutine GlobalSearch.m of the MATLAB R2020a environment) and the differential evolution algorithm (the DE method, the subroutine de.m of the MATLAB Central File Exchange 2021), respectively. Numerical results show that the proposed method performs well for the large-scale global optimization problems, especially the problems of which are difficult to be solved by the known global optimization methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Abdulaziz S. Almazyad

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.


2000 ◽  
Vol 7 (5) ◽  
pp. 321-332 ◽  
Author(s):  
Z. Zong ◽  
K.Y. Lam ◽  
Tessa Gan

Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm) is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.


2021 ◽  
Vol 1821 (1) ◽  
pp. 012055
Author(s):  
M L Shahab ◽  
F Azizi ◽  
B A Sanjoyo ◽  
M I Irawan ◽  
N Hidayat ◽  
...  

Author(s):  
Ahmed Fouad Ali ◽  
Nashwa Nageh Ahmed

Differential evolution algorithm (DE) is one of the most applied meta-heuristics algorithm for solving global optimization problems. However, the contributions of applying DE for large-scale global optimization problems are still limited compared with those problems for low dimensions. In this chapter, a new differential evolution algorithm is proposed in order to solve large-scale optimization problems. The proposed algorithm is called differential evolution with space partitioning (DESP). In DESP algorithm, the search variables are divided into small groups of partitions. Each partition contains a certain number of variables and this partition is manipulated as a subspace in the search process. Searching a limited number of variables in each partition prevents the DESP algorithm from wandering in the search space especially in large-scale spaces. The proposed algorithm is investigated on 15 benchmark functions and compared against three variants DE algorithms. The results show that the proposed algorithm is a cheap algorithm and obtains good results in a reasonable time.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Author(s):  
ZOHEIR EZZIANE

Probabilistic and stochastic algorithms have been used to solve many hard optimization problems since they can provide solutions to problems where often standard algorithms have failed. These algorithms basically search through a space of potential solutions using randomness as a major factor to make decisions. In this research, the knapsack problem (optimization problem) is solved using a genetic algorithm approach. Subsequently, comparisons are made with a greedy method and a heuristic algorithm. The knapsack problem is recognized to be NP-hard. Genetic algorithms are among search procedures based on natural selection and natural genetics. They randomly create an initial population of individuals. Then, they use genetic operators to yield new offspring. In this research, a genetic algorithm is used to solve the 0/1 knapsack problem. Special consideration is given to the penalty function where constant and self-adaptive penalty functions are adopted.


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


Sign in / Sign up

Export Citation Format

Share Document