scholarly journals Estimation model of PM2.5 Concentrations Based on Spatiotemporal Adaptability and Satellite Remote Sensing

Author(s):  
Weidong li ◽  
Liye Dong ◽  
Linyan Bai

Abstract Based on satellite remote sensing AOD, we can estimate and monitor the continuous changes of PM2.5, which solved the disadvantages of traditional ground station discrete monitoring. Four-dimensional spatiotemporal heterogeneity is not considered in the construction of traditional empirical regression models, such as geographically weighted regression model (GWR) and spatiotemporal geographically weighted regression model (gtwr). To solve this four-dimensional spatiotemporal nonstationarity, this article proposes and constructs a spatiotemporal adaptive fine particulate matter (PM2.5) concentration estimation model: 4D-GTWR by introducing a DEM (Digital elevation model) and time effects into a GWR model. This method solves the heterogeneity between the three-dimensional space and one-dimensional time by constructing a four-dimensional space kernel function and obtaining its weight. Based on PM2.5 ground observation data and meteorological data collected from December 2017 to February 2018 in Zhengzhou City, Henan Province, PM2.5 estimations are obtained from MODIS MYD-3K AOD data using the GWR, TWR, GTWR and 4D-GTWR models. The results showed that the MAE (mean absolute error) of the 4D-GTWR model decreased by 54.13%, 54.06% and 37.90%, compared to those of the GWR, TWR and GTWR models, respectively, and that the PM2.5 concentrations predicted by the 4D-GTWR model were closest to the measured values. The R2 (the correlation coefficient) of the 4D-GTWR model was 0.9496, which was better than those of the GWR (R2 =0.7761), TWR (R2 =0.7763) and GTWR (R2=0.8811) models. The 4D-GTWR model can not only improve the precision of PM2.5 estimations but can also reveal the four-dimensional spatial heterogeneity of PM2.5 concentrations and the differentiation of the DEM's influence on the spatial dimensions.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document