scholarly journals The Indian Ocean SST Link to Solar Induced Chlorophyll Fluorescence Over India During Early Summer Monsoon

Author(s):  
Roma Varghese ◽  
Swadhin K. Behera ◽  
Mukunda Dev Behera

Abstract This is a maiden attempt to explore the influence of sea surface temperature (SST) variations in the tropical Indian Ocean on the gross primary productivity (GPP) of the terrestrial vegetation of India during the summer monsoon. We studied the productivity of the vegetation across India using solar-induced chlorophyll fluorescence (SIF) as a proxy. Our results demonstrated a strong negative SST–SIF relationship: the productivity decreases (increases) when the SST of the tropical Indian Ocean is higher (lower) than normal. This SST–SIF coupling observed during June can be explained through the atmospheric teleconnections. Positive SST anomalies weaken the land–ocean thermal gradient during the monsoon onset period, reduce the monsoon flow, and hence decrease the moisture transport from the ocean to the Indian mainland. The resultant water stress, along with the high air temperature, leads to a reduction in the GPP. Conversely, negative SST anomalies strengthen the monsoon and increase the availability of moisture for photosynthesis. There is scope for improving regional GPP forecasting studies using the observed SST–SIF relationships.

2007 ◽  
Vol 20 (13) ◽  
pp. 3083-3105 ◽  
Author(s):  
Annalisa Cherchi ◽  
Silvio Gualdi ◽  
Swadhin Behera ◽  
Jing Jia Luo ◽  
Sebastien Masson ◽  
...  

Abstract The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the coupled manifold, is used to investigate the TIO SST variability and its relation with the tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.


2008 ◽  
Vol 21 (21) ◽  
pp. 5727-5741 ◽  
Author(s):  
Renguang Wu

Abstract Analysis of observations shows that in-phase transitions from the Indian summer monsoon (ISM) to the Australian summer monsoon (ASM) have occurred both in El Niño–Southern Oscillation (ENSO) and non-ENSO years. The present study investigates possible roles of the Indian Ocean in the in-phase ISM-to-ASM transitions. It is shown that an anomalous ISM leads to sea surface temperature (SST) anomalies in the tropical Indian Ocean through wind–evaporation effects. The resultant Indian Ocean SST anomalies induce an anomalous ASM of the same sign as the ISM through an anomalous east–west circulation over the eastern Indian Ocean and the Maritime Continent–northern Australia. The results indicate that the in-phase ISM-to-ASM transitions in non-ENSO years can be accomplished through monsoon–Indian Ocean interactions. The results of observational analysis are confirmed with numerical model experiments.


2009 ◽  
Vol 22 (7) ◽  
pp. 1834-1849 ◽  
Author(s):  
Renguang Wu

Abstract The present study investigates processes for out-of-phase transitions from the Australian summer monsoon (ASM) to the Indian summer monsoon (ISM). Two types of out-of-phase ASM-to-ISM transitions have been identified, depending on the evolution of the Pacific El Niño–Southern Oscillation (ENSO) events. The first type of transition is accompanied by a phase switch of ENSO in boreal spring to early summer. In the second type of transition, ENSO maintains its phase through boreal summer. The direct ENSO forcing plays a primary role for the first type of out-of-phase ASM-to-ISM transition, with complementary roles from the north Indian Ocean sea surface temperature (SST) anomalies that are partly induced by ENSO. The second type of out-of-phase ASM-to-ISM transition involves air–sea interaction processes in the tropical Indian Ocean that generate the north Indian Ocean SST anomalies and contribute to the monsoon transition. The initiation of tropical Indian Ocean air–sea interaction is closely related to ENSO in observations, but could also occur without ENSO according to a coupled general circulation model simulation. Results of numerical simulations substantiate the role of the Indian Ocean air–sea interaction in the out-of-phase ASM-to-ISM transition.


2015 ◽  
Vol 28 (13) ◽  
pp. 5063-5076 ◽  
Author(s):  
Shuangwen Sun ◽  
Jian Lan ◽  
Yue Fang ◽  
Tana ◽  
Xiaoqian Gao

Although the Indian Ocean dipole (IOD) and ENSO are significantly correlated, there are indeed some IODs independent of ENSO. In this research, the characteristics of independent IOD are investigated and a new triggering mechanism is proposed based on case study and statistical analysis. Results show that the independent IODs peak in an earlier season and have a weaker intensity compared with the IODs associated with ENSO. The wind anomaly associated with the independent IOD is very unique and shows a monsoonlike pattern, in addition to the equatorial easterly wind anomaly (EEWA) common to all IODs. The evolution of the EEWA associated with the independent IOD is well captured by the second EOF mode of the equatorial zonal wind interannual variability, suggesting that the independent IOD is an important climate mode inherent to the tropical Indian Ocean. The EEWA associated with the independent IOD is tightly linked to Indian summer monsoon activities in spring, and the convection anomalies associated with early summer monsoon onset in the Bay of Bengal plays a key role in inducing the EEWA. The EEWA can persist through spring and summer and causes a series of processes similar to those related to the IODs associated with ENSO. The correlation between the independent IOD and Indian summer monsoon activities increases dramatically after the 1980s, which is probably due to the mean state change in the tropical Indian Ocean climate system.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


2007 ◽  
Vol 20 (13) ◽  
pp. 3164-3189 ◽  
Author(s):  
H. Annamalai ◽  
H. Okajima ◽  
M. Watanabe

Abstract Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs. Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage. The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.


2007 ◽  
Vol 20 (13) ◽  
pp. 2937-2960 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract To understand the mechanisms of the interannual variability in the tropical Indian Ocean, two long-term simulations are conducted using a coupled ocean–atmosphere GCM—one with active air–sea coupling over the global ocean and the other with regional coupling restricted within the Indian Ocean to the north of 30°S while the climatological monthly sea surface temperatures (SSTs) are prescribed in the uncoupled oceans to drive the atmospheric circulation. The major spatial patterns of the observed upper-ocean heat content and SST anomalies can be reproduced realistically by both simulations, suggesting that they are determined by intrinsic coupled processes within the Indian Ocean. In both simulations, the interannual variability in the Indian Ocean is dominated by a tropical mode and a subtropical mode. The tropical mode is characterized by a coupled feedback among thermocline depth, zonal SST gradient, and wind anomalies over the equatorial and southern tropical Indian Ocean, which is strongest in boreal fall and winter. The tropical mode simulated by the global coupled model reproduces the main observational features, including a seasonal connection to the model El Niño–Southern Oscillation (ENSO). The ENSO influence, however, is weaker than that in a set of ensemble simulations described in Part I of this study, where the observed SST anomalies for 1950–98 are prescribed outside the Indian Ocean. Combining with the results from Part I of this study, it is concluded that ENSO can modulate the temporal variability of the tropical mode through atmospheric teleconnection. Its influence depends on the ENSO strength and duration. The stronger and more persistent El Niño events in the observations extend the life span of the anomalous events in the tropical Indian Ocean significantly. In the regional coupled simulation, the tropical mode is still active, but its dominant period is shifted away from that of ENSO. In the absence of ENSO forcing, the tropical mode is mainly stimulated by an anomalous atmospheric direct thermal cell forced by the fluctuations of the northwestern Pacific monsoon. The subtropical mode is characterized by an east–west dipole pattern of the SST anomalies in the southern subtropical Indian Ocean, which is strongest in austral fall. The SST anomalies are initially forced by surface heat flux anomalies caused by the anomalous southeast trade wind in the subtropical ocean during austral summer. The trade wind anomalies are in turn associated with extratropical variations from the southern annular mode. A thermodynamic air–sea feedback strengthens these subtropical anomalies quickly in austral fall and extends their remnants into the tropical ocean in austral winter. In the simulations, this subtropical variability is independent of ENSO.


2007 ◽  
Vol 20 (10) ◽  
pp. 2147-2164 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The biennial variability is a large component of year-to-year variations in the Indian summer monsoon (ISM). Previous studies have shown that El Niño–Southern Oscillation (ENSO) plays an important role in the biennial variability of the ISM. The present study investigates the role of the Indian Ocean in the biennial transition of the ISM when the Pacific ENSO is absent. The influence of the Indian and Pacific Oceans on the biennial transition between the ISM and the Australian summer monsoon (ASM) is also examined. Controlled numerical experiments with a coupled general circulation model (CGCM) are used to address the above two issues. The CGCM captures the in-phase ISM to ASM transition (i.e., a wet ISM followed by a wet ASM or a dry ISM followed by a dry ASM) and the out-of-phase ASM to ISM transition (i.e., a wet ASM followed by a dry ISM or a dry ASM followed by a wet ISM). These transitions are more frequent than the out-of-phase ISM to ASM transition and the in-phase ASM to ISM transition in the coupled model, consistent with observations. The results of controlled coupled model experiments indicate that both the Indian and Pacific Ocean air–sea coupling are important for properly simulating the biennial transition between the ISM and ASM in the CGCM. The biennial transition of the ISM can occur through local air–sea interactions in the north Indian Ocean when the Pacific ENSO is suppressed. The local sea surface temperature (SST) anomalies induce the Indian monsoon transition through low-level moisture convergence. Surface evaporation anomalies, which are largely controlled by surface wind speed changes, play an important role for SST changes. Different from local air–sea interaction mechanisms proposed in previous studies, the atmospheric feedback is not strong enough to reverse the SST anomalies immediately at the end of the monsoon season. Instead, the reversal of the SST anomalies is accomplished in the spring of the following year, which in turn leads to the Indian monsoon transition.


2005 ◽  
Vol 18 (18) ◽  
pp. 3726-3738 ◽  
Author(s):  
Markus Jochum ◽  
Raghu Murtugudde

Abstract A 40-yr integration of an eddy-resolving numerical model of the tropical Indian Ocean is analyzed to quantify the interannual variability that is caused by the internal variability of ocean dynamics. It is found that along the equator in the western Indian Ocean internal variability contributes significantly to the observed interannual variability. This suggests that in this location the predictability of SST is limited to the persistence time of SST anomalies, which is approximately 100 days. Furthermore, a comparison with other sources of variability suggests that internal variability may play an important role in modifying the Indian monsoon or preconditioning the Indian Ocean dipole/zonal mode.


2018 ◽  
Vol 31 (16) ◽  
pp. 6557-6573 ◽  
Author(s):  
Yazhou Zhang ◽  
Jianping Li ◽  
Jiaqing Xue ◽  
Juan Feng ◽  
Qiuyun Wang ◽  
...  

This paper investigates the impact of the South China Sea summer monsoon (SCSSM) on the Indian Ocean dipole (IOD). The results show that the SCSSM has a significant positive relationship with the IOD over the boreal summer [June–August (JJA)] and fall [September–November (SON)]. When the SCSSM is strong, the enhanced southwesterly winds that bring more water vapor to the western North Pacific (WNP) lead to surplus precipitation in the WNP, inducing anomalous ascending there. Consequently, the anomalous descending branch of the SCSSM Hadley circulation (SCSSMHC) develops over the Maritime Continent (MC), favoring deficit precipitation in situ. The precipitation dipole over the WNP and MC as well as the enhanced SCSSMHC leads to intensification of the southeasterly anomalies off Sumatra and Java, which then contributes to the negative sea surface temperature (SST) anomalies through the positive wind–evaporation–SST and wind–thermocline–SST (Bjerknes) feedbacks. Consequently, a positive IOD develops because of the increased zonal gradient of the tropical Indian Ocean SST anomalies and vice versa. The SCSSM has a peak correlation with the IOD when the former leads the latter by three months. This implies that a positive IOD can persist from JJA to SON and reach its mature phase within the frame of the positive Bjerknes feedback in SON. In addition, the local and remote SST anomalies in the tropical Indian and Pacific Oceans have a slight influence on the relationship between the SCSSM and precipitation dipole over the WNP and MC.


Sign in / Sign up

Export Citation Format

Share Document