scholarly journals Green Solvent Improving Mechanical Disruption of Palm Kernel Oil Extraction

Author(s):  
Eko K. Sitepu ◽  
Andy Chandra ◽  
Emma F. Zaidar ◽  
Annur Vika ◽  
Firman Sebayang ◽  
...  

Abstract Even though the mechanical extraction process offers a simple and environmentally friendly process, the recovery of oil is relatively low. Thermal pre-treating the oilseed increases the oil yield but produces unwanted oil colour. A new method which combines grinding and extraction using green solvents was developed to extract palm kernel oil. The performance of six different green solvents such as water, ethanol, isopropyl alcohol, dimethyl carbonate, ethyl acetate, and d-limonene in extraction palm kernel oil was determined using a controllable blender extractor (CBE), new extraction equipment modified from a household blender appliance. Further, ethyl acetate, which produced the maximum oil yield, was used to study the effect of the operating parameters of the CBE. The oil yield of 34.2 ± 0.02% was obtained in the extraction condition of the ratio of palm kernel to ethyl acetate of 1:7, rotational speed of 5000 rpm and 10 minutes extraction time. Compared to other green extraction methods, the CBE-intensified palm kernel oil extraction could save >70% energy consumption. In terms of extraction time, the CBE-intensified could extract palm kernel oil faster than existing extraction methods.

Author(s):  
Omeiza James Momoh ◽  
Vincent Nwoya Okafor

The model for the solvent extraction of palm kernel oil from palm kernel was generated for the process at varying particle sizes of palm kernel, temperature of extraction, duration of extraction and mass of palm kernel respectively using Least Square Linear Equation. Petroleum ether was used as solvent to carry out the extraction in a soxhlet apparatus. The percentage oil yield was determined for every extraction carried out. The experimental results obtained showed that percentage oil yield decreases with increase in particle size and mass, but increases with increase in the temperature and duration of extraction. The characterization of the extracted oil was also done to determine its physiochemical properties, which revealed palm kernel oil as a non-drying oil. Statistical analyses of each variable studied and its corresponding oil yield was carried out followed by the modeling of the extraction process for each parameter using least square linear equation. The interpretation of the model developed revealed a model which was significant in the variations obtained from the experimental results.


2015 ◽  
Vol 3 (1) ◽  
pp. 23-29
Author(s):  
Omeiza James Momoh ◽  
Vincent Nwoya Okafor

The model for the solvent extraction of palm kernel oil from palm kernel was generated for the process at varying particle sizes of palm kernel, temperature of extraction, duration of extraction and mass of palm kernel respectively using Least Square Linear Equation. Petroleum ether was used as solvent to carry out the extraction in a soxhlet apparatus. The percentage oil yield was determined for every extraction carried out. The experimental results obtained showed that percentage oil yield decreases with increase in particle size and mass, but increases with increase in the temperature and duration of extraction. The characterization of the extracted oil was also done to determine its physiochemical properties, which revealed palm kernel oil as a non-drying oil. Statistical analyses of each variable studied and its corresponding oil yield was carried out followed by the modeling of the extraction process for each parameter using least square linear equation. The interpretation of the model developed revealed a model which was significant in the variations obtained from the experimental results.


Author(s):  
A.I Usenu

The rate of Soybean (Glycine max) oil (SBO) extraction with a ternary solvent mixture (water, ethanol, and ethyl acetate) optimised with I-optimal Design (IOD) under the Mixture Methodology of the Design Expert (12.0.1.0). The data obtained were analysed statistically. The effect of extraction time (60-180 mins) and temperature (65-70 °C) on SBO was investigated and data obtained were used to evaluate the suitable kinetic and thermodynamic properties of the extraction. The maximum Rate of Oil Yield (32.35 mg/min) was achieved at the solvent mixture of 9.17% water, 6.67% ethanol, and 84.17% ethyl acetate. The Quadratic model best describes the Rate of Oil Yield, with a correlation coefficient (R2) of 0.9922 and an Adjusted R2 of 0.9825. The rate equation for the extraction process is a first-order reaction with ‘n’ value of 1.12756 (≅1.000) while the activation energy (Ea) and Arrhenius constant were 6508.1 kJ/mol and 38.901 s-1, respectively. The study has demonstrated the suitability of I-Optimal Design for the investigation of the Rate of Oil Yield from soybean and the result could be employed in oil extraction process design.


2017 ◽  
Vol 36 (2) ◽  
pp. 636
Author(s):  
S. L. Ezeoha ◽  
C. O. Akubuo ◽  
E. U. Odigboh ◽  
M. Arallo

2009 ◽  
Vol 30 (2) ◽  
pp. 194-198 ◽  
Author(s):  
Apasee Naksuk ◽  
David A. Sabatini ◽  
Chantra Tongcumpou

REAKTOR ◽  
2013 ◽  
Vol 14 (3) ◽  
pp. 242
Author(s):  
Wahyu Bahari Setianto ◽  
Priyo Atmaji ◽  
Didi Dwi Anggoro

Application of  supercritical carbon dioxide (SC-CO2) to vegetable oil extraction became an attractive technique due to its high solubility, short extraction time and simple purification. The method is considered as earth friendly technology due to the absence of chemical usage. Solubility of solute-SC-CO2 is an important data for application of the SC-CO2 extraction. In this work, the equilibrium solubility of the palm kernel oil (PKO) in SC-CO2 has been examined using extraction curve analysis. The examinations were performed at temperature and pressure ranges of  323.15 K to 353.15 K and 20.7 to 34.5 MPa respectively. It was obtained that the experimental solubility were from 0.0160 to 0.0503 g oil/g CO2 depend on the extraction condition. The experimental solubility data was well correlated with a solvent density based model with absolute percent deviation of 0.96. PENENTUAN KELARUTAN MINYAK INTI KELAPA SAWIT DAN PEMODELAN EKSTRAKSI DENGAN KARBON DIOKSIDA SUPERKRITIK. Sehubungan dengan kelarutan yang tinggi, waktu ekstraksi yang pendek dan pemurnian hasil yang mudah, aplikasi karbon dioksida superkritis (SC-CO2) pada ekstraksi minyak nabati menjadi sebuah teknik ekstraksi yang menarik. Karena tanpa penggunaan bahan kimia, metode ekstraksi ini dianggap sebagai teknologi yang ramah lingkungan. Kelarutan zat terlarut pada SC-CO2 merupakan data yang penting dalam aplikasi SC-CO2 pada proses ekstraksi.  Pada penelitian ini,  kelarutan kesetimbangan dari minyak biji sawit (PKO) dalam SC-CO2 telah diuji dengan mengunakan analisa kurva proses ekstraksi. Pengujian kelarutan tersebut dilakukan pada rentang suhu 323,15 K sampai 353,15 K dan rentang tekanan 20,7 MPa sampai 34,5 MPa. Hasil analisa menunjukkan bahwa kelarutan kesetimbangan hasil percobaan  PKO pada SC-CO2 adalah 0.0160 g minyak/g CO2 sampai 0,0503 g minyak/g CO2 tergantung pada kondisi ekstraksi. Data kelarutan kesetimbangan hasil percobaan  telah dikorelasaikan dengan baik menggunakan sebuah model kelarutan yang didasarkan pada densiti pelarut. Pemodelan tersebut mempunyai persen deviasi mutlak  0,96.


Sign in / Sign up

Export Citation Format

Share Document