Ab-initio DFT simulation of electronic and magnetic properties of Tin+1and FeTin clusters

Author(s):  
Rachida Haichour ◽  
Sofiane MAHTOUT

Abstract We report a computational investigation of the electronic and magnetic properties of neutral Tin+1and FeTin (n=1-10) clusters using ab-initio calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA). The best structures for Tin+1and FeTin clusters are planar for size n<5, while from n = 5, they showed a compact three dimensional cage structure. For the best structures of the FeTin clusters, the Fe atoms favors the peripheral position with highest coordination with the neighboring Ti atoms. The evolution as a function of the size of the average binding energies (Eb/atom) and HOMO–LUMO gaps of Tin+1 and FeTin (n=1-10) clusters are studied. The stability results show that the Tin+1 clusters have relatively higher stability than the FeTin cluster with the same size. In addition, the vertical ionization potentials and electron affinities, chemical hardness and atomic magnetic moment of Tin+1and FeTin (n=1-10) clusters are also investigated.

2017 ◽  
Vol 1 (1) ◽  
pp. 27-36
Author(s):  
M. Rashid ◽  
M. A. Iqbal ◽  
N. A. Noor

By considering density functional theory (DFT) in terms of ab-initio investigation, we have explored the structural, electronic and magnetic properties of cubic CeCrO3 for the first time. In order to determine the structural stability of cubic CeCrO3 compound, we optimized the structure of CeCrO3 in non-magnetic (NM), ferromagnetic (FM) and Anti-ferromagnetic (AFM) phases by using PBE generalized gradient approximation (GGA) functional to find the exchangecorrelation potential. From structural optimization, the FM phase of CeCrO3 is observed to be stable. For computing electronic and magnetic properties, thelately advanced modified Becke and Johnson local (spin) density approximation (mBJLDA) is used. Calculated band structures and density of states plots with an integer magnetic moment of 4 μB and reveal half-metallic character. In addition, s–d exchange constants (N0α) and p–d exchange constant (N0β) are determined, which are in agreement with a distinctive magneto-optical experiment.


2020 ◽  
Author(s):  
Amaria Bekhti-Siad ◽  
M. Baira ◽  
A. Bekhti Siad ◽  
M. E. Monir ◽  
F. Z. Dahou

Abstract The structural, elastic, electronic and magnetic properties of cubic double perovskite Pb2FeTaO6 have been investigated using self-consistent ab-initio calculation through full-potential linearized augmented plane wave (FP-LAPW) method within the frame work of the spin-polarized density functional theory (DFT), considering generalized gradient approximation (GGA) described by Perdew–Burke–Ernzerhof (PBE), GGA+U and mBJ-GGA. Pb2FeTaO6 is found as ductile material from the elastic calculations. The obtained magnetic results show that Pb2FeTaO6 is stable in the ferromagnetic state; the electronic properties show a half-metallic behavior using GGA and GGA+U and a semiconducting one with TB-mBJ, magnetic moments of each atom are also discussed in this study. These results confirm the use of this compound in spintronic devices.


2019 ◽  
Vol 33 (5) ◽  
pp. 1507-1512 ◽  
Author(s):  
A. Azouaoui ◽  
M. El Haoua ◽  
S. Salmi ◽  
A. El Grini ◽  
N. Benzakour ◽  
...  

AbstractIn this paper, we have studied the structural, electronic, and magnetic properties of the cubic perovskite system Mn4N using the first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA). The obtained data from DFT calculations are used as input data in Monte Carlo simulation with a mixed spin-5/2 and 1 Ising model to calculate the magnetic properties of this compound, such as the total, partial thermal magnetization, and the critical temperatures (TC). The obtained results show that Mn4N has a ferrimagnetic structure with two different sites of Mn in the lattice and presents a metallic behavior. The obtained TC is in good agreement with experimental results.


2018 ◽  
Vol 14 (4) ◽  
pp. 663-675
Author(s):  
R. Masrour ◽  
M. Ben Ali ◽  
H. El Moussaoui ◽  
Mohamed Hamedoun ◽  
A. Benyoussef ◽  
...  

Purpose The purpose of this paper is to synthesize the manganese ferrite nanoparticle MnFe2O4 and to investigate the structure, size and to study the electronic and the magnetic properties of MnFe2O4 nanoparticles. Design/methodology/approach The co-precipitation method is used to synthesize the MnFe2O4. The structure and size were investigated by X-ray diffraction. The superconducting quantum interference device is used to determine the some magnetic ground. From theoretical investigation point of view self-consistent ab initio calculations, based on density functional theory approach using full potential linear augmented plane wave method, were performed to investigate both electronic and magnetic properties of the MnFe2O4. The high temperatures series expansion (HTSE) is used to study the magnetic properties of MnFe2O4. Findings The saturation magnetization, the coercivity and the transition temperature varied between 21-43 emu/g, 20-50 Oe and 571-630 K, respectively, have been studied. The gap energy of MnFe2O4 has been deduced. The critical temperature and the critical exponent have been obtained using HTSEs. Originality/value In the present work, the authors study the electronic and magnetic properties of MnFe2O4. The results obtained by the experiment and by ab initio calculations were used in HTSE as input to deduce other physical parameters.


2020 ◽  
Vol 499 ◽  
pp. 143859 ◽  
Author(s):  
K.L. Salcedo Rodríguez ◽  
J.J. Melo Quintero ◽  
H.H. Medina Chanduví ◽  
A.V. Gil Rebaza ◽  
R. Faccio ◽  
...  

2005 ◽  
Vol 1 (4) ◽  
pp. 172-182 ◽  
Author(s):  
Patrizia Calaminici ◽  
Marcela R. Beltrán

Density functional calculations of neutral, cationic and anionic nickel octamer are presented. The structure optimization and frequency analysis were performed on the local density approximation (LDA) level with the exchange correlation functional by Vosko,Wilk and Nusair (VWN). Improved calculations for the stability were based on the generalized gradient approximation (GGA) where the exchange correlation functional of Perdew and Wang (PW) was used. For neutral, cationic and anionic cluster several isomers and different spin multiplicities were investigated in order to find the lowest structures. Structural parameters, relative energies, binding energies, harmonic frequencies, adiabatic ionization potential and electron affinity will be presented. The calculated values are compared with available experimental data.


SPIN ◽  
2021 ◽  
Author(s):  
Youcef Daoudi ◽  
Hadj Moulay Ahmed Mazouz ◽  
Brahim Lagoun ◽  
Ali Benghia

We report first-principles investigation on structural, electronic and magnetic properties of 3d transition metal element-doped rock-salt calcium selenide Ca[Formula: see text]TMxSe (TM = V, Cr and Mn) at concentrations [Formula: see text] = 0.0625, 0.125 and 0.25. We performed the calculations in the framework of the density functional theory (DFT) using the full-potential linearized augmented plane waves plus local orbitals (FP-LAPW+lo) method within the Wu–Cohen generalized gradient approximation (WC-GGA) for the structural optimization and the Tran–Blaha modified Becke–Johnson (TBmBJ) potential for the electronic and the magnetic properties. The computed spin-polarized band structures and densities of states show that Ca[Formula: see text]CrxSe compounds at all studied concentrations are half-metallic ferromagnets with a complete spin polarization of 100% at Fermi-level while the Ca[Formula: see text]VxSe and Ca[Formula: see text]MnxSe are ferromagnetic semiconductors. The total magnetic moments for Ca[Formula: see text]VxSe, Ca[Formula: see text]CrxSe, and Ca[Formula: see text]MnxSe show the integer values of 3[Formula: see text][Formula: see text], 4[Formula: see text][Formula: see text], and 5[Formula: see text][Formula: see text], respectively, with a major contribution of transition metal elements (TM) in the total magnetization. Also, we reported the calculated exchange constants [Formula: see text] and [Formula: see text] and the band edge spin splitting of the valence ([Formula: see text]) and conduction ([Formula: see text]) bands. The ferromagnetism of these compounds is due to the super-exchange and the double-exchange mechanisms in addition to the strong p–d exchange interaction. Therefore, the predicted results indicate that the diluted Ca[Formula: see text]TMxSe (TM = V, Cr, Mn) compounds are suitable candidates for a possible application in the field of spintronic technology.


2016 ◽  
Vol 3 (1) ◽  
pp. 24 ◽  
Author(s):  
Bishnu Prasad Paudel ◽  
Nurapati Pantha ◽  
Narayan Prasad Adhikari

<p>The functionalization of graphene by the addition of Manganese (Mn) atom to its surface has been investigated computationally by using density-functional theory (DFT) based first-principles method within DFT-D2 level of approximations. The calculations have been computed employing the Quantum ESPRESSO codes. The stability, geometrical structures, electronic and magnetic properties of pure and Mn adatom graphene systems have been studied. From the information of adsorption energies of Mn atom on the different sites of graphene, the top site is found to be the most favorable one for its adsorption. Present study finds that the London dispersion interaction plays a major role in the weak binding of Mn on graphene. The study of electronic and magnetic properties of Mn decorated graphene shows that the conduction and valence band are overlapped with finite density of states (DOS) at Fermi level. The dissimilar DOS for up and down spin calculations quantify magnetic moment as 5.48 μ<sub>B</sub> which is consistent with the previous study</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 24-34</p>


2012 ◽  
Vol 542-543 ◽  
pp. 1418-1421
Author(s):  
Qing Xiang Gao ◽  
Lin Xu ◽  
Bo Wu

The spin-polarized generalized gradient approximation to the density functional theory is used to determine the geometries, stability, electronic structures, and magnetic properties of the Gd8O12cluster. Our work reveals that the ground state configuration of the Gd8O12cluster is a hexahedral cage structure with Cisymmetry. The electronic and magnetic properties imply that the formations of the ionic bonds between the adjacent Gd and O atoms result in the high stability of the Gd8O12cluster, which is due to the charge transfers between the Gd 5d, 6s electrons to O 2p orbital. It is also confirmed by the electron densities of HOMO-LUMO states. In addition, the analysis of the magnetic properties implies the total magnetic moments are mostly dominated by the Gd 4f orbital.


2011 ◽  
Vol 217-218 ◽  
pp. 924-929
Author(s):  
Jin Hong Xue ◽  
Jing Chao Chen ◽  
Jie Yu ◽  
Jing Feng ◽  
Yong Pan ◽  
...  

Ca3Ru2O7 is new tpye of thermoelectric materials.A theoretical study is presented for the stability, electronic and magnetic properties of three phases of this new thermoelectric materials in the framework of density functional theory (DFT). The calculated cohesive energy is -7.94eV/unit. AFM2 are less stable than other pahses. Electronic calculations indicate that Ca3Ru2O7 is metallic in nature. The covalent bonds in these structures are due to orbital overlap between p bands of O and d bands of Ru, and DOS at Fermi level are dominated by d bands of Ru. FM phase have obvious magnetic moments.


Sign in / Sign up

Export Citation Format

Share Document