scholarly journals Phenotypical Comparison of Pseudomonas Aeruginosa Isolated from Human and Veterinary Samples; Impact of Host Adaptation on Infection Pathogenesis

Author(s):  
Stefan J. Kaiser ◽  
Annalisa DeRosa ◽  
Christa Ewers ◽  
Frank Günther

Abstract Purpose: Determinants of virulence in Pseudomonas aeruginosa vary strongly depending on its habitat. In this study, we analyzed these alterations depending on the host organism in isolates cultured from canine ears and compared it to clinical extended-spectrum antibiotic-resistant Pseudomonas aeruginosa isolates (XDR), clinical antibiotic-sensitive (non-XDR) from humans and environmental isolates (EI) analyzed during our first study in 2017. Methods: A total of 22 veterinary isolates cultured from canine ears (VET) were examined for spontaneous biofilm formation, stress response in biofilm formation induced by meropenem, in vitro fitness, susceptibility to human serum and polymorphonuclear leukocytes and the genetically determined virulence factors toxA, exoS, exoT, exoU, exoY, nan1, cif, lasA and lasB.Results: We observed significantly elevated spontaneous biofilm formation and serum susceptibility in VET isolates compared to EI and non-XDR isolates as well as significantly decreased in vitro fitness compared to XDR isolates. The VET isolates resembled most the XDR subgroup of isolates previously cultured from blood. Within the environmental isolates, we observed an increase of spontaneous biofilm formation and exoU presence in isolates cultured from community water samples over hospital water samples to pool samples.Conclusions: Considering the distinct differences in some features of the examined VET isolates, a higher degree of phenotypical adaption can be assumed. Increased biofilm formation seems to be a common and characteristic event in isolates adapted to a specific habitat. Therefore amplification of potentially more virulent Pseudomonas aeruginosa strains in domestic animals may lead to elevated zoonotic risk for example for pet owners.

Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


2021 ◽  
pp. 1-8
Author(s):  
Soheir A.A. Hagras ◽  
Alaa El-Dien M.S. Hosny ◽  
Omneya M. Helmy ◽  
Mounir M. Salem-Bekhit ◽  
Faiyaz Shakeel ◽  
...  

This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½–1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymeric chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and ¼ MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.


2020 ◽  
Vol 148 (3-4) ◽  
pp. 196-202
Author(s):  
Snjezana Petrovic ◽  
Jasmina Basic ◽  
Zoran Mandinic ◽  
Dragana Bozic ◽  
Marina Milenkovic ◽  
...  

Introduction/Objective. Biofilm and pyocyanin production are essential components of Pseudomonas aeruginosa virulence and antibiotic resistance. Our objective was to examine inhibitory effect of synthetized propafenone derivatives 3-(2-Fluorophenyl)- 1-(2- (2-hydroxy-3-propylamino-propoxy)-phenyl)-propan-1-one hydrochloride (5OF) and3-(2- Trifluoromethyl-phenyl)-1-(2-(2-hydroxy-3-propylamino-propoxy)-phenyl)-propan-1-one hydrochloride (5CF3) on biofilm and pyocyanin in Pseudomonas aeruginosa clinical strains. Methods. Effects were tested on nine clinical isolates and one control laboratory strain of P. aeruginosa. In vitro analysis of biofilm growing was performed by incubating bacteria (0.5 McFarland) with 5OF and 5CF3 (500?31.2 ?g/ml) and measuring optical density (OD) at 570 nm. Bacteria in medium without compounds were positive control. Blank medium (an uninoculated medium without test compounds) was used as negative control. Pyocyanin production was estimated by OD at 520 nm, after bacteria incubated with 5CF3 and 5OF (250 and 500 ?g/ml), treated with chloroform, and chloroform layer mixed with HCl. Results. A total of 500 ?g/ml of 5OF and 5CF3 completely inhibited biofilm formation in 10/10 and 4/10 strains, respectively. A total of 250 ?g/ml of 5OF and 5CF3 strongly inhibited biofilm formation in 7/10 strains, while inhibition with 125 ?g/ml of 5OF and 5CF3 was moderate. Lower concentrations had almost no effect on biofilm production. Pyocyanin production was reduced to less than 40% of the control value in 6/9, and less than 50% of the control in 7/9 strains with 500 ?g/ml of 5OF and 5CF3, respectively. At 250 ?g/ml 5OF and 5CF3, most strains had pyocyanin production above 50% of the control value. Conclusion. Synthetized propafenone derivatives, 5OF and 5CF3, inhibited biofilms and pyocyanin production of Pseudomonas aeruginosa clinical strains. Presented results suggest that propafenone derivatives are potential lead-compounds for synthesis of novel antipseudomonal drugs.


2021 ◽  
Vol 151 ◽  
pp. 106058
Author(s):  
Felix LewisOscar ◽  
Chari Nithya ◽  
Sasikumar Vismaya ◽  
Manivel Arunkumar ◽  
Arivalagan Pugazhendhi ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 148-157 ◽  
Author(s):  
James Gurney ◽  
Léa Pradier ◽  
Joanne S Griffin ◽  
Claire Gougat-Barbera ◽  
Benjamin K Chan ◽  
...  

Abstract Background and objectives Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance—so called ‘phage steering’. Methodology Recent work has shown that the phage OMKO1 can interact with efflux pumps and in so doing select for both phage resistance and antibiotic sensitivity of the pathogenic bacterium Pseudomonas aeruginosa. We tested the robustness of this approach to three different antibiotics in vitro (tetracycline, erythromycin and ciprofloxacin) and one in vivo (erythromycin). Results We show that in vitro OMKO1 can reduce antibiotic resistance of P. aeruginosa (Washington PAO1) even in the presence of antibiotics, an effect still detectable after ca.70 bacterial generations in continuous culture with phage. Our in vivo experiment showed that phage both increased the survival times of wax moth larvae (Galleria mellonella) and increased bacterial sensitivity to erythromycin. This increased antibiotic sensitivity occurred both in lines with and without the antibiotic. Conclusions and implications Our study supports a trade-off between antibiotic resistance and phage sensitivity. This trade-off was maintained over co-evolutionary time scales even under combined phage and antibiotic pressure. Similarly, OMKO1 maintained this trade-off in vivo, again under dual phage/antibiotic pressure. Our findings have implications for the future clinical use of steering in phage therapies. Lay Summary: Given the rise of antibiotic-resistant bacterial infection, new approaches to treatment are urgently needed. Bacteriophages (phages) are bacterial viruses. The use of such viruses to treat infections has been in near-continuous use in several countries since the early 1900s. Recent developments have shown that these viruses are not only effective against routine infections but can also target antibiotic resistant bacteria in a novel, unexpected way. Similar to other lytic phages, these so-called ‘steering phages’ kill the majority of bacteria directly. However, steering phages also leave behind bacterial variants that resist the phages, but are now sensitive to antibiotics. Treatment combinations of these phages and antibiotics can now be used to greater effect than either one independently. We evaluated the impact of steering using phage OMKO1 and a panel of three antibiotics on Pseudomonas aeruginosa, an important pathogen in hospital settings and in people with cystic fibrosis. Our findings indicate that OMKO1, either alone or in combination with antibiotics, maintains antibiotic sensitivity both in vitro and in vivo, giving hope that phage steering will be an effective treatment option against antibiotic-resistant bacteria.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Eva Pericolini ◽  
Bruna Colombari ◽  
Gianmarco Ferretti ◽  
Ramona Iseppi ◽  
Andrea Ardizzoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document