scholarly journals Evaluation of clinical value and potential mechanism of MTFR2 in lung adenocarcinoma via bioinformatics

Author(s):  
Cheng Chen ◽  
Yang Tang ◽  
Wendong Qu ◽  
Xu Han ◽  
Jiebin Zuo ◽  
...  

Abstract Background Mitochondrial fission regulator 2 (MTFR2) was involved in the progression and development of various cancers. However, the relationship between MTFR2 with lung adenocarcinoma (LUAD) had not been reported. Herein, this study analyzed the clinical significance and potential mechanisms of MTFR2 in LUAD via bioinformatic tools. Results We found that the level of MTFR2 was increased, and correlated with sex, age, smoking history, neoplasm staging, histological subtype and TP53 mutation status in LUAD patients. Kaplan-Meier survival analysis showed LUAD patients with increased MTFR2 had a poor prognosis. In addition, univariate COX regression analysis showed neoplasm staging, T stage, distant metastasis and MTFR2 level were risk factors for the prognosis of LUAD. A total of 1127 genes were coexpressed with MTFR2, including 840 positive and 208 negative related genes. KEGG and GSEA found that MTFR2 participated in the progression of LUAD by affecting cell cycle, DNA replication, homologous recombination, p53 signaling pathway and other mechanisms. The top 10 coexpressed genes, namely CDK1, CDC20, CCNB1, PLK1, CCNA2, AURKB, CCNB2, BUB1B, MAD2L1 and BUB1 were highly expressed, and were associated with poor prognosis in LUAD. Conclusions Consequently, we elucidated MTFR2 was a biomarker for diagnosis and poor prognosis in LUAD, and might participate in the progression of LUAD via affecting cell cycle, DNA replication, homologous recombination and p53 signaling pathway.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cheng Chen ◽  
Yang Tang ◽  
Wen-Dong Qu ◽  
Xu Han ◽  
Jie-Bin Zuo ◽  
...  

Abstract Background Mitochondrial fission regulator 2 (MTFR2) was involved in the progression and development of various cancers. However, the relationship between MTFR2 with lung adenocarcinoma (LUAD) had not been reported. Herein, this study analyzed the clinical significance and potential mechanisms of MTFR2 in LUAD via bioinformatics tools. Results We found that the level of MTFR2 was increased, and correlated with sex, age, smoking history, neoplasm staging, histological subtype and TP53 mutation status in LUAD patients. Kaplan-Meier survival analysis showed LUAD patients with increased MTFR2 had a poor prognosis. In addition, univariate COX regression analysis showed neoplasm staging, T stage, distant metastasis and MTFR2 level were risk factors for the prognosis of LUAD. A total of 1127 genes were coexpressed with MTFR2, including 840 positive and 208 negative related genes. KEGG and GSEA found that MTFR2 participated in the progression of LUAD by affecting cell cycle, DNA replication, homologous recombination, p53 signaling pathway and other mechanisms. The top 10 coexpressed genes, namely CDK1, CDC20, CCNB1, PLK1, CCNA2, AURKB, CCNB2, BUB1B, MAD2L1 and BUB1 were highly expressed, and were associated with poor prognosis in LUAD. Conclusions Consequently, we elucidated MTFR2 was a biomarker for diagnosis and poor prognosis in LUAD, and might participate in the progression of LUAD via affecting cell cycle, DNA replication, homologous recombination and p53 signaling pathway.


2021 ◽  
Author(s):  
Cheng Chen ◽  
Yang Tang ◽  
Wendong Qu ◽  
Xu Han ◽  
Jiebin Zuo ◽  
...  

Abstract Background: Mitochondrial fission regulator 2 (MTFR2) was involved in the progression and development of various cancers. However, the relationship between MTFR2 with lung adenocarcinoma (LUAD) had not been reported. Herein, this study analyzed the clinical significance and potential mechanisms of MTFR2 in LUAD via bioinformatics tools.Results: We found that the level of MTFR2 was increased, and correlated with sex, age, smoking history, neoplasm staging, histological subtype and TP53 mutation status in LUAD patients. Kaplan-Meier survival analysis showed LUAD patients with increased MTFR2 had a poor prognosis. In addition, univariate COX regression analysis showed neoplasm staging, T stage, distant metastasis and MTFR2 level were risk factors for the prognosis of LUAD. A total of 1127 genes were coexpressed with MTFR2, including 840 positive and 208 negative related genes. KEGG and GSEA found that MTFR2 participated in the progression of LUAD by affecting cell cycle, DNA replication, homologous recombination, p53 signaling pathway and other mechanisms. The top 10 coexpressed genes, namely CDK1, CDC20, CCNB1, PLK1, CCNA2, AURKB, CCNB2, BUB1B, MAD2L1 and BUB1 were highly expressed, and were associated with poor prognosis in LUAD. Conclusions: Consequently, we elucidated MTFR2 was a biomarker for diagnosis and poor prognosis in LUAD, and might participate in the progression of LUAD via affecting cell cycle, DNA replication, homologous recombination and p53 signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Chengmin Xuan ◽  
Mingwei Jin ◽  
Lei Wang ◽  
Shengbai Xue ◽  
Qi An ◽  
...  

Gliomas are the most common primary brain tumors. Because of their high degree of malignancy, patient survival rates are unsatisfactory. Therefore, exploring glioma biomarkers will play a key role in early diagnosis, guiding treatment, and monitoring the prognosis of gliomas. We found two lncRNAs, six miRNAs, and nine mRNAs that were differentially expressed by analyzing genomic data of glioma patients. The diagnostic value of mRNA expression levels in gliomas was determined by receiver operating characteristic (ROC) curve analysis. Among the nine mRNAs, the area under the ROC curve values of only CEP55 and SHCBP1 were >0.7, specifically 0.834 and 0.816, respectively. Additionally, CEP55 and SHCBP1 were highly expressed in glioma specimens and showed increased expression according to the glioma grade, and outcomes of high expression patients were poor. CEP55 was enriched in the cell cycle, DNA replication, mismatch repair, and P53 signaling pathway. SHCBP1 was enriched in the cell cycle, DNA replication, ECM receptor interaction, and P53 signaling pathway. Age, grade, IDH status, chromosome 19/20 cogain, and SHCBP1 were independent factors for prognosis. Our findings suggest the PART1-hsa-miR-429-SHCBP1 regulatory network plays an important role in gliomas.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1244
Author(s):  
Min Yu ◽  
Xiaoyan Hu ◽  
Jingyu Yan ◽  
Ying Wang ◽  
Fei Lu ◽  
...  

Up to now, the chemotherapy approaches for glioblastoma were limited. 1-[2-Thiazolylazo]-2-naphthol (named as NSC139021) was shown to significantly inhibit the proliferation of prostate cancer cells by targeting the atypical protein kinase RIOK2. It is documented that RIOK2 overexpressed in glioblastoma. However, whether NSC139021 can inhibit the growth of glioblastoma cells and be a potential drug for glioblastoma treatment need to be clarified. In this study, we investigated the effects of NSC139021 on human U118MG, LN-18, and mouse GL261 glioblastoma cells and the mouse models of glioblastoma. We verified that NSC139021 effectively inhibited glioblastoma cells proliferation, but it is independent of RIOK2. Our data showed that NSC139021 induced cell cycle arrest at G0/G1 phase via the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway in G1/S checkpoint regulation. In addition, NSC139021 also increased the apoptosis of glioblastoma cells by activating the p53 signaling pathway and increasing the levels of Bax and cleaved caspase 3. Furthermore, intraperitoneal administration of 150 mg/kg NSC139021 significantly suppressed the growth of human and mouse glioblastoma in vivo. Our study suggests that NSC139021 may be a potential chemotherapy drug for the treatment of glioblastoma by targeting the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway.


2020 ◽  
Author(s):  
Zhili Zeng ◽  
Zebiao Cao ◽  
Ying Tang

Abstract Background: The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC.Methods: HCC raw data were extracted from The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test, Kruskal-Wallis test and logistic regression were applied to analyze the relationship between the expression of E2F2 and clinicopathologic characteristics. Cox regression and Kaplan-Meier were employed to evaluate the correlation between clinicopathologic features and survival. The biological function of E2F2 was annotated by Gene Set Enrichment Analysis (GSEA).Results: The expression of E2F2 was increased in HCC samples. The expression of elevated E2F2 in HCC samples was prominently correlated with histologic grade (OR =2.62 for G3-4 vs. G1-2, p=1.80E-05), clinical stage (OR =1.74 for III-IV vs. I-II, p=0.03), T (OR =1.64 for T3-4 vs.T1-2, p=0.04), tumor status (OR =1.88 for with tumor vs. tumor free, p= 3.79E-03), plasma alpha fetoprotein (AFP) value (OR =3.18 for AFP≥400 vs AFP<20, p= 2.16E-04; OR=2.50 for 20≤AFP<400 vs AFP<20, p=2.56E-03). Increased E2F2 had an unfavorable OS (p=7.468e−05), PFI (p=3.183e−05), DFI (p=0.001), DSS (p=4.172e−05). Elevated E2F2 was independently bound up with OS (p =0.004, hazard ratio [HR]= 2.4 (95% CI [1.3-4.2])), DFI (P =0.029, hazard ratio [HR] = 2.0 (95% CI [1.1-3.7])) and PFI (P =0.005, hazard ratio [HR] = 2.2 (95% CI [1.3-3.9])). GSEA disclosed that cell circle, RNA degradation, pyrimidine metabolism, base excision repair, aminoacyl tRNA biosynthesis, DNA replication, p53 signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, citrate cycle TCA cycle were notably enriched in E2F2 high expression phenotype.Conclusions: Elevated E2F2 can be a promising independent prognostic biomarker and therapeutic target for HCC. Additionally, cell cycle, pyrimidine metabolism, DNA replication, p53 signaling pathway, ubiquitin-mediated proteolysis, the citrate cycle TCA cycle may be the key pathway by which E2F2 participates in the initial and progression of HCC.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhili Zeng ◽  
Zebiao Cao ◽  
Ying Tang

Abstract Background The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC. Methods HCC raw data were extracted from The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test, Kruskal-Wallis test and logistic regression were applied to analyze the relationship between the expression of E2F2 and clinicopathologic characteristics. Cox regression and Kaplan-Meier were employed to evaluate the correlation between clinicopathologic features and survival. The biological function of E2F2 was annotated by Gene Set Enrichment Analysis (GSEA). Results The expression of E2F2 was increased in HCC samples. The expression of elevated E2F2 in HCC samples was prominently correlated with histologic grade (OR = 2.62 for G3–4 vs. G1–2, p = 1.80E-05), clinical stage (OR = 1.74 for III-IV vs. I-II, p = 0.03), T (OR = 1.64 for T3–4 vs.T1–2, p = 0.04), tumor status (OR = 1.88 for with tumor vs. tumor free, p = 3.79E-03), plasma alpha fetoprotein (AFP) value (OR = 3.18 for AFP ≥ 400 vs AFP<20, p = 2.16E-04; OR = 2.50 for 20 ≤ AFP<400 vs AFP<20, p = 2.56E-03). Increased E2F2 had an unfavorable OS (p = 7.468e− 05), PFI (p = 3.183e− 05), DFI (p = 0.001), DSS (p = 4.172e− 05). Elevated E2F2 was independently bound up with OS (p = 0.004, hazard ratio [HR] = 2.4 (95% CI [1.3–4.2])), DFI (P = 0.029, hazard ratio [HR] = 2.0 (95% CI [1.1–3.7])) and PFI (P = 0.005, hazard ratio [HR] = 2.2 (95% CI [1.3–3.9])). GSEA disclosed that cell circle, RNA degradation, pyrimidine metabolism, base excision repair, aminoacyl tRNA biosynthesis, DNA replication, p53 signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, citrate cycle TCA cycle were notably enriched in E2F2 high expression phenotype. Conclusions Elevated E2F2 can be a promising independent prognostic biomarker and therapeutic target for HCC. Additionally, cell cycle, pyrimidine metabolism, DNA replication, p53 signaling pathway, ubiquitin-mediated proteolysis, the citrate cycle TCA cycle may be the key pathway by which E2F2 participates in the initial and progression of HCC.


2016 ◽  
Vol 12 (6) ◽  
pp. 4605-4612 ◽  
Author(s):  
Ping Wang ◽  
Jiayue Cui ◽  
Jihong Wen ◽  
Yunhui Guo ◽  
Liangzi Zhang ◽  
...  

2018 ◽  
Vol 234 (1) ◽  
pp. 619-631 ◽  
Author(s):  
Hui Zhang ◽  
Xuan Zhang ◽  
Xun Li ◽  
Wen-Bo Meng ◽  
Zhong-Tian Bai ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3515
Author(s):  
Youying Tu ◽  
Lianfu Chen ◽  
Ning Ren ◽  
Bo Li ◽  
Yuanyuan Wu ◽  
...  

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis—BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document