An Early Prediction and Classification of Lung Nodule Diagnosis on CT Images Based on Hybrid Deep Learning Techniques

Author(s):  
Vijay Kumar Gugulothu ◽  
Savadam Balaji

Abstract Detection of malignant lung nodules at an early stage may allow for clinical interventions that increase the survival rate of lung cancer patients. The use of hybrid deep learning techniques to detect nodules will improve the sensitivity of lung cancer screening and the interpretation speed of lung scans.Accurate detection of lung nodes is an important step in computed tomography (CT) imaging to detect lung cancer. However, it is very difficult to identify strong nodes due to the diversity of lung nodes and the complexity of the surrounding environment.Here, we proposed alung nodule detection and classification with CT images based on hybrid deep learning (LNDC-HDL) techniques. First, we introduce achaotic bird swarm optimization (CBSO) algorithm for lung nodule segmentation using statistical information. Second, we illustrate anImproved Fish Bee (IFB) algorithm for feature extraction and selection process. Third, we develop hybrid classifier i.e. hybrid differential evolution based neural network (HDE-NN) for tumor prediction and classification.Experimental results have shown that the use of computed tomography, which demonstrates the efficiency and importance of the HDE-NN specific structure for detecting lung nodes on CT scans, increases sensitivity and reduces the number of false positives. The proposed method shows that the benefits of HDE-NN node detection can be reaped by combining clinical practice.

AI ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 28-67 ◽  
Author(s):  
Diego Riquelme ◽  
Moulay Akhloufi

Detecting malignant lung nodules from computed tomography (CT) scans is a hard and time-consuming task for radiologists. To alleviate this burden, computer-aided diagnosis (CAD) systems have been proposed. In recent years, deep learning approaches have shown impressive results outperforming classical methods in various fields. Nowadays, researchers are trying different deep learning techniques to increase the performance of CAD systems in lung cancer screening with computed tomography. In this work, we review recent state-of-the-art deep learning algorithms and architectures proposed as CAD systems for lung cancer detection. They are divided into two categories—(1) Nodule detection systems, which from the original CT scan detect candidate nodules; and (2) False positive reduction systems, which from a set of given candidate nodules classify them into benign or malignant tumors. The main characteristics of the different techniques are presented, and their performance is analyzed. The CT lung datasets available for research are also introduced. Comparison between the different techniques is presented and discussed.


2019 ◽  
Vol 65 (2) ◽  
pp. 224-233
Author(s):  
Sergey Morozov ◽  
Viktor Gombolevskiy ◽  
Anton Vladzimirskiy ◽  
Albina Laypan ◽  
Pavel Kononets ◽  
...  

Study aim. To justify selective lung cancer screening via low-dose computed tomography and evaluate its effectiveness. Materials and methods. In 2017 we have concluded the baseline stage of “Lowdose computed tomography in Moscow for lung cancer screening (LDCT-MLCS)” trial. The trial included 10 outpatient clinics with 64-detector CT units (Toshiba Aquilion 64 and Toshiba CLX). Special low-dose protocols have been developed for each unit with maximum effective dose of 1 mSv (in accordance with the requirements of paragraph 2.2.1, Sanitary Regulations 2.6.1.1192-03). The study involved 5,310 patients (53% men, 47% women) aged 18-92 years (mean age 62 years). Diagnosis verification was carried out in the specialized medical organizations via consultations, additional instrumental, laboratory as well as pathohistological studies. The results were then entered into the “National Cancer Registry”. Results. 5310 patients (53% men, 47% women) aged 18 to 92 years (an average of 62 years) participated in the LDCT-MLCS. The final cohort was comprised of 4762 (89.6%) patients. We have detected 291 (6.1%) Lung-RADS 3 lesions, 228 (4.8%) Lung- RADS 4A lesions and 196 (4.1%) Lung-RADS 4B/4X lesions. All 4B and 4X lesions were routed in accordance with the project's methodology and legislative documents. Malignant neoplasms were verified in 84 cases (1.76% of the cohort). Stage I-II lung cancer was actively detected in 40.3% of these individuals. For the first time in the Russian Federation we have calculated the number needed to screen (NNS) to identify one lung cancer (NNS=57) and to detect one Stage I lung cancer (NNS=207). Conclusions. Based on the global experience and our own practices, we argue that selective LDCT is the most systematic solution to the problem of early-stage lung cancer screening.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Wenfa Jiang ◽  
Ganhua Zeng ◽  
Shuo Wang ◽  
Xiaofeng Wu ◽  
Chenyang Xu

Lung cancer is one of the malignant tumors with the highest fatality rate and nearest to our lives. It poses a great threat to human health and it mainly occurs in smokers. In our country, with the acceleration of industrialization, environmental pollution, and population aging, the cancer burden of lung cancer is increasing day by day. In the diagnosis of lung cancer, Computed Tomography (CT) images are a fairly common visualization tool. CT images visualize all tissues based on the absorption of X-rays. The diseased parts of the lung are collectively referred to as pulmonary nodules, the shape of nodules is different, and the risk of cancer will vary with the shape of nodules. Computer-aided diagnosis (CAD) is a very suitable method to solve this problem because the computer vision model can quickly scan every part of the CT image of the same quality for analysis and will not be affected by fatigue and emotion. The latest advances in deep learning enable computer vision models to help doctors diagnose various diseases, and in some cases, models have shown greater competitiveness than doctors. Based on the opportunity of technological development, the application of computer vision in medical imaging diagnosis of diseases has important research significance and value. In this paper, we have used a deep learning-based model on CT images of lung cancer and verified its effectiveness in the timely and accurate prediction of lungs disease. The proposed model has three parts: (i) detection of lung nodules, (ii) False Positive Reduction of the detected nodules to filter out “false nodules,” and (iii) classification of benign and malignant lung nodules. Furthermore, different network structures and loss functions were designed and realized at different stages. Additionally, to fine-tune the proposed deep learning-based mode and improve its accuracy in the detection Lung Nodule Detection, Noudule-Net, which is a detection network structure that combines U-Net and RPN, is proposed. Experimental observations have verified that the proposed scheme has exceptionally improved the expected accuracy and precision ratio of the underlined disease.


2019 ◽  
Vol 25 (6) ◽  
pp. 954-961 ◽  
Author(s):  
Diego Ardila ◽  
Atilla P. Kiraly ◽  
Sujeeth Bharadwaj ◽  
Bokyung Choi ◽  
Joshua J. Reicher ◽  
...  

Author(s):  
T. Maria Patricia Peeris ◽  
Prof. P. Brundha

Lungs are the most crucial organs in a human body. Since the cancer detection began, lung cancer has been the most common terminal disease amongst all type of cancers. The contribution of deep learning, especially the convolution neural networks has widely reduced the mortality rates resulting from lung cancer. The classification of Computed Tomography (CT) images has enhanced the early diagnosis of lung cancer that has enabled victims to undergo treatment at an early stage. The resolution of the CT images have been variedly used for the accuracy of the model. Besides, the detection of lumps or anomalies in the images has greatly supported early diagnosis. Classification plays a vital role in the deep learning models to sort out the input images as positive and negative based on the attribute of the model built. However, the generalisation of classifiers has reduced the accuracy of the corresponding models built. To increase the accuracy and efficiency of the deep learning model, an optimised classification technique is used to predict lung cancer from the CT images. The purpose of optimisation here will enable the model to adapt stipulated feature extraction process according to the input images fed into the network. The model will be trained for predicting purpose given any resolution of the images. KEYWORDS: Lung cancer, CT images, Classification techniques, Optimised Classification, Prediction


2021 ◽  
Vol 2078 (1) ◽  
pp. 012048
Author(s):  
Jiasheng Ni

Abstract Remote medical prognosis application is a category of medical tests tool designed to collect patients’ body conditions and offer diagnosis results synchronously. However, most online applications are predicated on a simple chat bot which typically redirect patients to other online medical websites, which undermines the user experience and may prompt useless information for their reference. To tackle these issues, this paper proposed a medical prognosis application with deep learning techniques for a more responsive and intelligent medical prognosis procedure. This application can be break down into three parts-lung cancer detection, a database-supporting medical QA bot and a Hierarchical Bidirectional LSTM model (HBDA). A 3D-CNN model is built for the lung cancer detection, with a sequence of sliced CT images as inputs and outputs a probability scaler for tumor indications. A knowledge graph is applied in the medical QA bot implementation and the HBDA model is designed for semantic segmentation in order to better capture users’ intention in medical questions. For the performance of the medical prognosis, since we have limited computer memory, the 3D-CNN didn’t perform very well on detecting tumor conditions in the CT images with accuracy at around 70%. The knowledge graph-based medical QA bot intelligently recognize the underlying pattern in patients’ question and delivered decent medical response. The HBDA model performs well on distinguish the similarities and disparities between various medical questions, reaching accuracy at 90%. These results shed light for the feasibility of utilizing deep learning techniques such as 3D-CNN, Knowledge Graph, and Hierarchical Bi-directional LSTM to simulate the medical prognosis process.


2021 ◽  
Vol 1 (1) ◽  
pp. 33-39
Author(s):  
Shivan H. M. Mohammed ◽  
Ahmet Çinar

One of the most common malignant tumors in the world today is lung cancer, and it is the primary cause of death from cancer. With the continuous advancement of urbanization and industrialization, the problem of air pollution has become more and more serious. The best treatment period for lung cancer is the early stage. However, the early stage of lung cancer often does not have any clinical symptoms and is difficult to be found. In this paper, lung nodule classification has been performed; the data have used of CT image is SPIE AAPM-Lung. In recent years, deep learning (DL) was a popular approach to the classification process. One of the DL approaches that have used is Transfer Learning (TL) to eliminate training costs from scratch and to train for deep learning with small training data. Nowadays, researchers have been trying various deep learning techniques to improve the efficiency of CAD (computer-aided system) with computed tomography in lung cancer screening. In this work, we implemented pre-trained CNN include: AlexNet, ResNet18, Googlenet, and ResNet50 models. These networks are used for training the network and CT image classification. CNN and TL are used to achieve high performance resulting and specify lung cancer detection on CT images. The evaluation of models is calculated by some matrices such as confusion matrix, precision, recall, specificity, and f1-score.


Sign in / Sign up

Export Citation Format

Share Document