scholarly journals Verification of the Geomagnetic Field Models Using Historical Satellite Measurements Obtained in 1964 and 1970

Author(s):  
Anatoly Soloviev ◽  
Dmitry Peregoudov

Abstract In 2019, the WDC for Solar-Terrestrial Physics in Moscow digitized the archive of observations of the Earth’s magnetic field carried out by the Soviet satellites Kosmos-49 (1964) and Kosmos-321 (1970). As a result, the scientific community for the first time obtained access to a unique digital data set, which was registered at the very beginning of the scientific space era. This article sets out three objectives. First, the quality of the obtained measurements is assessed by their comparison with the IGRF reference field model. Secondly, we assess the quality of the models, which at that time were derived from the data of these two satellites and ground-based observations. Thirdly, we propose a new, improved model of the geomagnetic field secular variation based on the scalar measurements of the Kosmos-49 and Kosmos-321 satellites using modern mathematical methods.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Sabrina Sanchez ◽  
Johannes Wicht ◽  
Julien Bärenzung

Abstract The IGRF offers an important incentive for testing algorithms predicting the Earth’s magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration.


2017 ◽  
Vol 35 (5) ◽  
pp. 1085-1092
Author(s):  
Metodi Metodiev ◽  
Petya Trifonova

Abstract. The Bulgarian Geomagnetic Reference Field (BulGRF) for 2015.0 epoch and its secular variation model prediction up to 2020.0 is produced and presented in this paper. The main field model is based on the well-known polynomial approximation in latitude and longitude of the geomagnetic field elements. The challenge in our modelling strategy was to update the absolute field geomagnetic data from 1980.0 up to 2015.0 using secular measurements unevenly distributed in time and space. As a result, our model gives a set of six coefficients for the horizontal H, vertical Z, total field F, and declination D elements of the geomagnetic field. The extrapolation of BulGRF to 2020 is based on an autoregressive forecasting of the Panagyurishte observatory annual means. Comparison of the field values predicted by the model with Panagyurishte (PAG) observatory annual mean data and two vector field measurements performed in 2015 shows a close match with IGRF-12 values and some difference with the real (measured) values, which is probably due to the influence of crustal sources. BulGRF proves to be a reliable alternative to the global geomagnetic field models which together with its simplicity makes it a useful tool for reducing magnetic surveys to a common epoch carried out over the Bulgarian territory up to 2020.


2000 ◽  
Vol 18 (1) ◽  
pp. 120-128 ◽  
Author(s):  
P. R. Sutcliffe

Abstract. Global and regional geomagnetic field models give the components of the geomagnetic field as functions of position and epoch; most utilise a polynomial or Fourier series to map the input variables to the geomagnetic field values. The only temporal variation generally catered for in these models is the long term secular variation. However, there is an increasing need amongst certain users for models able to provide shorter term temporal variations, such as the geomagnetic daily variation. In this study, for the first time, artificial neural networks (ANNs) are utilised to develop a geomagnetic daily variation model. The model developed is for the southern African region; however, the method used could be applied to any other region or even globally. Besides local time and latitude, input variables considered in the daily variation model are season, sunspot number, and degree of geomagnetic activity. The ANN modelling of the geomagnetic daily variation is found to give results very similar to those obtained by the synthesis of harmonic coefficients which have been computed by the more traditional harmonic analysis of the daily variation.Key words. Geomagnetism and paleomagnetism (time variations; diurnal to secular) · Ionosphere (modelling and forecasting)


2020 ◽  
Author(s):  
Martin Rother ◽  
Monika Korte ◽  
Jürgen Matzka ◽  
Achim Morschhauser ◽  
Claudia Stolle ◽  
...  

<p>The Earth's core magnetic field model Mag.num was the parent model for the GFZ IGRF 13 candidate submission. The model is based on geomagnetic ground observatory and Swarm satellite observations. Epochs 2020.0 and beyond were not covered by the data available at the time of submission and our results were based on predictions. In this study, we investigate the effect of the more recent available data on our results of the 2020.0 epoch and the predicted secular variation by generating an updated Mag.num version. We especially focus on the spatial and temporal patterns of the local geomagnetic field minimum of the South Atlantic Anomaly (SAA). Recently, global geomagnetic field models have shown that an additional, although shallow, secondary minimum at Earth's surface has developed since around 2005. The location and significance of the secondary minimum and of the saddle point between the two minima are assessed also in view of the respective differences among the candidate models.</p>


Author(s):  
S. Yin ◽  
L. Zhang ◽  
H. T. Zhao ◽  
H. P. Chen ◽  
W. C. Gao

Abstract. Using high-precision DEM and high-resolution image, the geomorphic type boundary is accurately located on the basis of 1:1 million geomorphic type data boundary in China. For the first time, a national geomorphic data set with positioning accuracy of 1:250000 scale mapping accuracy has been formed. Based on the production technology and process of 1:250000 national geomorphic data set, as well as the content index and requirement of geomorphic statistical analysis, this paper designs and realizes the quality inspection model, evaluation index and evaluation method of 1:250000 national geomorphic data set. The results of 60 1:250000 geomorphic data as samples show that the quality of geomorphic data can be truly reflected.


Geophysics ◽  
1975 ◽  
Vol 40 (5) ◽  
pp. 907-908
Author(s):  
Robert D. Regan ◽  
Joseph C. Cain

On March 24 and 25, 1975, the Zmuda Memorial Field Model Conference cosponsored by the Society of Exploration Geophysicists (SEG) was held at the Broadmoor Hotel, in Colorado Springs, Colorado. This meeting was designed to provide an opportunity for dialogue between those who derive geomagnetic field models and the various users and to serve as an opportunity to discuss the plans for the proposed revision of the International Geomagnetic Reference Field Model (IGRF). The conference included an objective appraisal of the use of field models in magnetic surveys and documented the need for a more accurate reference field. This report summarizes the conference results as they pertain to the members of SEG. A complete summary, including abstracts, is published in the July (1975) issue of EOS, Transactions of the American Geophysical Union.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 47-48
Author(s):  
Claudia Haferlach ◽  
Siegfried Hänselmann ◽  
Wencke Walter ◽  
Sarah Volkert ◽  
Melanie Zenger ◽  
...  

Background: Chromosome banding analysis (CBA) is one of the most important techniques in diagnostics and prognostication in hematologic neoplasms. CBA is still a challenging method with very labor-intensive wet lab processes and karyotyping that requires highly skilled and experienced specialists for tumor cytogenetics. Short turnaround times (TAT) are becoming increasingly important to enable genetics-based treatment stratification at diagnosis. Aim: Improve TAT and quality of CBA by automated wet lab processes and AI-based algorithms for automatic karyotyping. Methods: In the last 15 years the CBA workflow has gradually been automated with focus on the wet lab and metaphase capturing processes. Now, a retrospective unselected digital data set of 100,000 manually arranged karyograms (KG) with normal karyotype (NKG) from routine diagnostics was used to train a deep neural network (DNN) classifier to automatically determine the class/number and orientation of the respective chromosomes (AI based classifier normal, AI-CN). With a total of 6 Mio parameters, the DNN uses two distinct output layers to simultaneously predict the chromosome number (24 classes) and the angle that is required to rotate the chromosome in its correct, vertical position (360 classes). Training of the DNN took 16 days on a Nvidia RTX 2080 Ti graphic card with 4352 cores. AI-CN was implemented into the routine workflow (including ISO 15189) after 7 months of development and intensive testing. Results: The AI-CN was tested by highly experienced staff in an independent prospective validation set of 500 NKG: 22,675/23,000 chromosomes (98.6%) were correctly assigned by AI-CN. In 369/500 (73.8%) of cells all chromosomes were correctly assigned, in an additional 20% only 2 chromosomes were interchanged. The chromosomes accounting for the majority of misclassifications were chromosomes 14 and 15 as well as 4 and 5, which are difficult to distinguish in poor quality metaphases also for humans. The 1st AI-CN was implemented into routine diagnostics in August 2019 and the 2nd AI-CN - optimized for chromosome orientation - was used since November 2019. Since then more than 17,500 cases have been processed with AI-CN (>350,000 metaphases) in routine diagnostics resulting in the following benefits: 1) Reduced working time: an experienced cytogeneticist needs - depending on chromosome quality - between 1 and 3 minutes to arrange a KG, while AI-CN needs only 1 second and the cytogeneticist about 30 seconds to review the KG. 2) Shorter TAT: The proportion of cases reported within 5 days increased from 30% before AI-CN (2019) to 36% with AI-CN1 (2019) and 45% with AI-CN2 (2019/2020), while the proportion of cases reported >7 days was reduced to 28%, 21%, and 17%, respectively (figure). Using AI-CN for aberrant karyotypes results in correct assignment of normal chromosomes and thus also correct KG in cases with solely numerical chromosome abnormalities. Derivative chromosomes derived from structural abnormalities (SA) that differ clearly from any normal chromosome are not automatically assigned but are left out for manual classification. Thus, even in cases with SA, using AI-CN saves time. To allow AI based SA assignment, two additional classifiers normal/aberrant (CNA) were built: AI-CNA1 was trained on 54,634 KG encompassing 10 different SA (AKG) and 100,000 NKG and AI-CNA2 was trained on all AKG and an equal number of NKG. First validation tests are promising and optimization is ongoing. Once the CNA has been optimized, a standardized high quality of chromosome aberration detection is feasible. A fully automated separation of chromosomes is currently in progress and will reduce the TAT by another 12-24 hours. In a fully automated workflow the detection of small subclones can be further optimized by increasing today's standard of 20 metaphases to several hundred, even without any delay in TAT and need for additional personnel. Conclusions: Implementation of AI in CBA substantially improves the quality of results and shortens turnaround times even in comparison to highly trained and experienced cytogeneticists. In the majority of cases a complete karyotype analysis can be guaranteed within 3 to 7 days, allowing CBA based treatment strategies at diagnosis. This fully automated workflow can be implemented worldwide, is rapidly scalable, can be performed cloud based and requires in the near future fewer experienced tumor cytogeneticists. Figure Disclosures Hänselmann: MetaSystems: Current Employment. Lörch:MetaSystems: Current equity holder in private company.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yanyan Yang ◽  
Gauthier Hulot ◽  
Pierre Vigneron ◽  
Xuhui Shen ◽  
Zeren Zhima ◽  
...  

AbstractUsing magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission.


2020 ◽  
Vol 5 (2) ◽  
pp. 463-478
Author(s):  
Elizabeth Crais ◽  
Melody Harrison Savage

Purpose The shortage of doctor of philosophy (PhD)–level applicants to fill academic and research positions in communication sciences and disorders (CSD) programs calls for a detailed examination of current CSD PhD educational practices and the generation of creative solutions. The intended purposes of the article are to encourage CSD faculty to examine their own PhD program practices and consider the perspectives of recent CSD PhD graduates in determining the need for possible modifications. Method The article describes the results of a survey of 240 CSD PhD graduates and their perceptions of the challenges and facilitators to completing a PhD degree; the quality of their preparation in research, teaching, and job readiness; and ways to improve PhD education. Results Two primary themes emerged from the data highlighting the need for “matchmaking.” The first time point of needed matchmaking is prior to entry among students, mentors, and expectations as well as between aspects of the program that can lead to students' success and graduation. The second important matchmaking need is between the actual PhD preparation and the realities of the graduates' career expectations, and those placed on graduates by their employers. Conclusions Within both themes, graduate's perspectives and suggestions to help guide future doctoral preparation are highlighted. The graduates' recommendations could be used by CSD PhD program faculty to enhance the quality of their program and the likelihood of student success and completion. Supplemental Material https://doi.org/10.23641/asha.11991480


Sign in / Sign up

Export Citation Format

Share Document