scholarly journals Identification of Some Dietary Flavonoids as Potential Inhibitors of TMPRSS2 Through Protein-ligand Interaction Studies and Binding Free Energy Calculations

Author(s):  
Jibin K Varughese ◽  
Kavitha J ◽  
Sindhu K S ◽  
Dhiya Francis ◽  
Joseph Libin K L ◽  
...  

Abstract The alarming increase in COVID-19 cases and deaths calls for an urgent cost-effective pharmacological approach. Here, we examine the inhibitory activity of a group of dietary bioactive flavonoids against the human protease TMPRSS2, which plays a major role in SARS CoV-2 viral entry. After the molecular docking studies of a large number of flavonoids, four compounds with high binding scores were selected and studied in detail. The binding affinities of these four ligands, Amentoflavone, Narirutin, Eriocitrin, and Naringin, at the active site of TMPRSS2 target were investigated using MD simulations followed by MM-PBSA binding energy calculations. From the studies, a number of significant hydrophobic and hydrogen bonding interactions between the ligands and binding site amino residues of TMPRSS2 are identified which showcase their excellent inhibitory activity against TMPRSS2. Among these ligands, Amentoflavone and Narirutin showed MM-PBSA binding energy values of -155.48 and -138.13 kJ/mol respectively. Our previous studies of the inhibitory activity of these compounds against main protease of SARS-COV2 and the present study on TMPRSS2 strongly highlighted that Amentoflavone and Naringin can exhibit promising multi-target activity against SARS-CoV-2. Moreover, due to their wide availability, no side effects and low cost, these compounds could be recommended as dietary supplements for COVID patients or for the development of SARS-CoV-2 treatments.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


2019 ◽  
Author(s):  
Panagiotis Lagarias ◽  
Kerry Barkan ◽  
Eva Tzortzini ◽  
Eleni Vrontaki ◽  
Margarita Stampelou ◽  
...  

<p>Adenosine A<sub>3 </sub>receptor (A<sub>3</sub>R), is a promising drug target against cancer cell proliferation. Currently there is no experimentally determined structure of A<sub>3</sub>R. Here, we have investigate a computational model, previously applied successfully for agonists binding to A<sub>3</sub>R, using molecular dynamic (MD) simulations, Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) binding free energy calculations. Extensive computations were performed to explore the binding profile of O4-{[3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbonyl}-2-methyl-1,3-thiazole-4-carbohydroximamide (K18) to A<sub>3</sub>R. K18 is a new specific and competitive antagonist at the orthosteric binding site of A<sub>3</sub>R, discovered using virtual screening and characterized pharmacologically in our previous studies. The most plausible binding conformation for the dichlorophenyl group of K18 inside the A<sub>3</sub>R is oriented towards trans-membrane helices (TM) 5 and 6, according to the MM-PBSA and MM-GBSA binding free energy calculations, and by the previous results obtained by mutating residues of TM5, TM6 to alanine which reduce antagonist potency. The results from 14 site-directed mutagenesis experiments were interpreted using MD simulations and MM-GBSA calculations which show that the relative binding free energies of the mutant A<sub>3</sub>R - K18 complexes compare to the WT A<sub>3</sub>R are in agreement with the effect of the mutations, i.e. the reduction, maintenance or increase of antagonist potency. We show that when the residues V169<sup>5.30</sup>, M177<sup>5.38</sup>, I249<sup>6.54</sup> involved in direct interactions with K18 are mutated to alanine, the mutant A<sub>3</sub>R - K18 complexes reduce potency, increase the RMSD value of K18 inside the binding area and the MM-GBSA binding free energy compared to the WT A<sub>3</sub>R complex. Our computational model shows that other mutant A<sub>3</sub>R complexes with K18, including directly interacting residues, i.e. F168<sup>5.29</sup>A, L246<sup>6.51</sup>A, N250<sup>6.55</sup>A complexes with K18 are not stable. In these complexes of A<sub>3</sub>R mutated in directly interacting residues one or more of the interactions between K18 and these residues are lost. In agreement with the experiments, the computations show that, M174<sup>5.35</sup> a residue which does not make direct interactions with K18 is critical for K18 binding. A striking results is that the mutation of residue V169<sup>5.30</sup> to glutamic acid maintained antagonistic potency. This effect is in agreement with the binding free energy calculations and it is suggested that is due to K18 re-orientation but also to the plasticity of A<sub>3</sub>R binding area. The mutation of direct interacting L90<sup>3.32</sup> in the low region and the non-directly interacting L264<sup>7.35</sup> to alanine in the middle region increases the antagonistic potency, suggesting that chemical modifications of K18 can be applied to augment antagonistic potency. The calculated binding energies Δ<i>G</i><sub>eff</sub> values of K18 against mutant A<sub>3</sub>Rs displayed very good correlation with experimental potencies (pA<sub>2</sub> values). These results further approve the computational model for the description of K18 binding with critical residues of the orthosteric binding area which can have implications for the design of more effective antagonists based on the structure of K18.</p>


2020 ◽  
Vol 16 (5) ◽  
pp. 605-617 ◽  
Author(s):  
Kauê Santana da Costa ◽  
João M. Galúcio ◽  
Deivid Almeida de Jesus ◽  
Guelber Cardoso Gomes ◽  
Anderson Henrique Lima e Lima ◽  
...  

Background : Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an enzyme that isomerizes phosphorylated serine or threonine motifs adjacent to proline residues. Pin1 has important roles in several cellular signaling pathways, consequently impacting the development of multiple types of cancers. Methods: Based on the previously reported inhibitory activity of pentacyclic triterpenoids isolated from the gum resin of Boswellia genus against Pin1, we designed a computational experiment using molecular docking, pharmacophore filtering, and structural clustering allied to molecular dynamics (MD) simulations and binding free energy calculations to explore the inhibitory activity of new triterpenoids against Pin1 structure. Results: Here, we report different computational evidence that triterpenoids from neem (Azadirachta indica A. Juss), such as 6-deacetylnimbinene, 6-Oacetylnimbandiol, and nimbolide, replicate the binding mode of the Pin1 substrate peptide, interacting with high affinity with the binding site and thus destabilizing the Pin1 structure. Conclusion: Our results are supported by experimental data, and provide interesting structural insights into their molecular mechanism of action, indicating that their structural scaffolds could be used as a start point to develop new inhibitors against Pin1.


2020 ◽  
Author(s):  
Ido Ben-Shalom ◽  
Zhixiong Lin ◽  
Brian Radak ◽  
Charles Lin ◽  
Woody Sherman ◽  
...  

Rigorous binding free energy methods in drug discovery are growing in popularity due to a combination of methodological advances, improvements in computer hardware, and workflow automation. These calculations typically use molecular dynamics (MD) to sample from the Boltzmann distribution of conformational states. However, when part or all the binding site is inaccessible to bulk solvent, the time needed for water molecules to equilibrate between bulk solvent and the binding site can be well beyond what is practical with standard MD. This sampling limitation is problematic in relative binding free energy calculations, which compute the reversible work of converting Ligand 1 to Ligand 2 within the binding site. Thus, if Ligand 1 is smaller and/or more polar than Ligand 2, the perturbation may allow additional water molecules to occupy a region of the binding site. However, this change in hydration may not be captured by standard MD simulations and may therefore lead to errors in the computed free energy. We recently developed a hybrid Monte Carlo/MD (MC/MD) method, which speeds the equilibration of water between bulk solvent and buried cavities, while sampling from the intended distribution of states. Here, we report on the use of this approach in the context of alchemical binding free energy calculations. We find that using MC/MD markedly improves the accuracy of the calculations and also reduces hysteresis between the forward and reverse perturbations, relative to matched calculations using only MD with or without the crystallographic water molecules. The present method is available for use in the AMBER simulation software.<br>


2019 ◽  
Author(s):  
Panagiotis Lagarias ◽  
Kerry Barkan ◽  
Eva Tzortzini ◽  
Eleni Vrontaki ◽  
Margarita Stampelou ◽  
...  

<p>Adenosine A<sub>3 </sub>receptor (A<sub>3</sub>R), is a promising drug target against cancer cell proliferation. Currently there is no experimentally determined structure of A<sub>3</sub>R. Here, we have investigate a computational model, previously applied successfully for agonists binding to A<sub>3</sub>R, using molecular dynamic (MD) simulations, Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) binding free energy calculations. Extensive computations were performed to explore the binding profile of O4-{[3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbonyl}-2-methyl-1,3-thiazole-4-carbohydroximamide (K18) to A<sub>3</sub>R. K18 is a new specific and competitive antagonist at the orthosteric binding site of A<sub>3</sub>R, discovered using virtual screening and characterized pharmacologically in our previous studies. The most plausible binding conformation for the dichlorophenyl group of K18 inside the A<sub>3</sub>R is oriented towards trans-membrane helices (TM) 5 and 6, according to the MM-PBSA and MM-GBSA binding free energy calculations, and by the previous results obtained by mutating residues of TM5, TM6 to alanine which reduce antagonist potency. The results from 14 site-directed mutagenesis experiments were interpreted using MD simulations and MM-GBSA calculations which show that the relative binding free energies of the mutant A<sub>3</sub>R - K18 complexes compare to the WT A<sub>3</sub>R are in agreement with the effect of the mutations, i.e. the reduction, maintenance or increase of antagonist potency. We show that when the residues V169<sup>5.30</sup>, M177<sup>5.38</sup>, I249<sup>6.54</sup> involved in direct interactions with K18 are mutated to alanine, the mutant A<sub>3</sub>R - K18 complexes reduce potency, increase the RMSD value of K18 inside the binding area and the MM-GBSA binding free energy compared to the WT A<sub>3</sub>R complex. Our computational model shows that other mutant A<sub>3</sub>R complexes with K18, including directly interacting residues, i.e. F168<sup>5.29</sup>A, L246<sup>6.51</sup>A, N250<sup>6.55</sup>A complexes with K18 are not stable. In these complexes of A<sub>3</sub>R mutated in directly interacting residues one or more of the interactions between K18 and these residues are lost. In agreement with the experiments, the computations show that, M174<sup>5.35</sup> a residue which does not make direct interactions with K18 is critical for K18 binding. A striking results is that the mutation of residue V169<sup>5.30</sup> to glutamic acid maintained antagonistic potency. This effect is in agreement with the binding free energy calculations and it is suggested that is due to K18 re-orientation but also to the plasticity of A<sub>3</sub>R binding area. The mutation of direct interacting L90<sup>3.32</sup> in the low region and the non-directly interacting L264<sup>7.35</sup> to alanine in the middle region increases the antagonistic potency, suggesting that chemical modifications of K18 can be applied to augment antagonistic potency. The calculated binding energies Δ<i>G</i><sub>eff</sub> values of K18 against mutant A<sub>3</sub>Rs displayed very good correlation with experimental potencies (pA<sub>2</sub> values). These results further approve the computational model for the description of K18 binding with critical residues of the orthosteric binding area which can have implications for the design of more effective antagonists based on the structure of K18.</p>


Author(s):  
Ido Ben-Shalom ◽  
Zhixiong Lin ◽  
Brian Radak ◽  
Charles Lin ◽  
Woody Sherman ◽  
...  

Rigorous binding free energy methods in drug discovery are growing in popularity due to a combination of methodological advances, improvements in computer hardware, and workflow automation. These calculations typically use molecular dynamics (MD) to sample from the Boltzmann distribution of conformational states. However, when part or all the binding site is inaccessible to bulk solvent, the time needed for water molecules to equilibrate between bulk solvent and the binding site can be well beyond what is practical with standard MD. This sampling limitation is problematic in relative binding free energy calculations, which compute the reversible work of converting Ligand 1 to Ligand 2 within the binding site. Thus, if Ligand 1 is smaller and/or more polar than Ligand 2, the perturbation may allow additional water molecules to occupy a region of the binding site. However, this change in hydration may not be captured by standard MD simulations and may therefore lead to errors in the computed free energy. We recently developed a hybrid Monte Carlo/MD (MC/MD) method, which speeds the equilibration of water between bulk solvent and buried cavities, while sampling from the intended distribution of states. Here, we report on the use of this approach in the context of alchemical binding free energy calculations. We find that using MC/MD markedly improves the accuracy of the calculations and also reduces hysteresis between the forward and reverse perturbations, relative to matched calculations using only MD with or without the crystallographic water molecules. The present method is available for use in the AMBER simulation software.<br>


2018 ◽  
Author(s):  
Daniel J. Mermelstein ◽  
Lin Charles ◽  
Nelson Gard ◽  
Kretsch Rachael ◽  
J. Andrew McCammon ◽  
...  

AbstractAlchemical free energy calculations (AFE) based on molecular dynamics (MD) simulations are key tools in both improving our understanding of a wide variety of biological processes and accelerating the design and optimization of therapeutics for numerous diseases. Computing power and theory have, however, long been insufficient to enable AFE calculations to be routinely applied in early stage drug discovery. One of the major difficulties in performing AFE calculations is the length of time required for calculations to converge to an ensemble average. CPU implementations of MD based free energy algorithms can effectively only reach tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on massively parallel supercomputers. Therefore, converged free energy calculations on large numbers of potential lead compounds are often untenable, preventing researchers from gaining crucial insight into molecular recognition, potential druggability, and other crucial areas of interest. Graphics Processing Units (GPUs) can help address this. We present here a seamless GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907-atom system, with accuracy equivalent to the existing CPU implementation in AMBER. The implementation described here is currently part of the AMBER 18 beta code and will be an integral part of the upcoming version 18 release of AMBER.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550023 ◽  
Author(s):  
M. Harunur Rashid ◽  
Germano Heinzelmann ◽  
Serdar Kuyucak

How a mutation affects the binding free energy of a ligand is a fundamental problem in molecular biology/biochemistry with many applications in pharmacology and biotechnology, e.g. design of drugs and enzymes. Free energy change due to a mutation can be determined most accurately by performing alchemical free energy calculations in molecular dynamics (MD) simulations. Here we discuss the necessary conditions for success of free energy calculations using toxin peptides that bind to ion channels as examples. We show that preservation of the binding mode is an essential requirement but this condition is not always satisfied, especially when the mutation involves a charged residue. Otherwise problems with accuracy of results encountered in mutation of charged residues can be overcome by performing the mutation on the ligand in the binding site and bulk simultaneously and in the same system. The proposed method will be useful in improving the affinity and selectivity profiles of drug leads and enzymes via computational design and protein engineering.


Sign in / Sign up

Export Citation Format

Share Document