scholarly journals The Effect of Isometric Hip External Rotation on Lower Extremity Muscles Activities During Pelvic Drop With Different Positions of the Hip Rotation in Subjects With and Without Genu Valgum: Controlled Laboratory Study

Author(s):  
Roghayeh Jalil piran ◽  
Farideh Babakhani ◽  
Ramin Balochi ◽  
Mohamadreza Hatefi

Abstract Background: Gluteus medius muscle (Gmed) dysfunction has been confirmed as a functional defect in subjects with Genu Valgum Deformity (GVD). In relation to these subjects, increase Gmed activity without synergist muscles dominance is considered as part of a specialized exercise program. Methods: A total of thirty female recreational athletes with (n=15) and without (n=15) GVD participated in this study. Surface electromyography measured Gmed, tensor fascia latae (TFL), and quadratus lumborum (QL) muscles activity when subjects performed pelvic drop (PD) in three different positions of hip rotations with and without applied isometric hip external rotation force. Results: There were differences in muscle activity between GVD and healthy subjects. The Gmed/TFL and Gmed/QL muscles activity ratio altered when placing the hip in different rotation positions and applying isometric load. Conclusions: The lower extremity muscles activity is affected by GVD, and changing the positions of the hip rotation in the PD task can be associated with altered muscle activity in both GVD and healthy Groups. However, applying isometric hip external rotation during PD can be suggested as an effective intervention to increase Gmed activity.

2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P<.001), ABD-ER (F3,57 = 10.458, P<.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2013 ◽  
Vol 29 (4) ◽  
pp. 421-427 ◽  
Author(s):  
Birgit Unfried ◽  
Arnel Aguinaldo ◽  
Daniel Cipriani

Running on a road for fitness, sport, or recreation poses unique challenges to the runner, one of which is the camber of the surface. Few studies have examined the effects of camber on running, namely, kinematic studies of the knee and ankle. There is currently no information available regarding muscle response to running on a cambered road surface. The purpose of this study was to investigate the effects of a cambered road on lower extremity muscle activity, as measured by electromyography in recreational runners. In addition, this study examined a true outdoor road surface, as opposed to a treadmill surface. The mean muscle activity of the tibialis anterior, lateral gastrocnemius, vastus medialis oblique, biceps femoris, and gluteus medius were studied. Fifteen runners completed multiple running trials on cambered and level surfaces. During the stance phase, mean activities of tibialis anterior, lateral gastrocnemius, and vastus medialis oblique were greater on the gutter side than the crown side. There were no differences in mean muscle activity during the swing phase. The findings of this study suggest that running on a road camber alters the activity of select lower extremity muscles possibly in response to lower extremity compensations to the cambered condition.


2005 ◽  
Vol 14 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Jennifer E. Earl

Context:Gluteus medius (GM) contraction during single-leg stance prevents the contralateral pelvis from “dropping,” providing stability for lower extremity motion.Objective:To determine which combination of hip rotation and abduction exercise results in the greatest activity of the GM and whether the GM responds to increased loads in these exercises.Design and Setting:Repeated measures, laboratory.Subjects:20 healthy volunteers.Interventions:Resistance (2.26 and 4.53 kg) was provided to 3 variations of a single-leg-stance exercise: hip abduction only, abduction-internal rotation (ABD-IR), and abduction-external rotation.Measurements:Muscle activity was recorded from the anterior and middle portions of the GM using surface electromyography.Results:ABD-IR produced the most activity in the anterior and middle sections of the GM muscle. The 4.53-kg load produced significantly more activity than the 2.26-kg load (P< .05).Conclusions:The GM is most active when performing abduction and internal rotation of the hip. This information could be used to develop GM-strengthening exercises.


2015 ◽  
Vol 31 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Max R. Paquette ◽  
Audrey Zucker-Levin ◽  
Paul DeVita ◽  
Joseph Hoekstra ◽  
David Pearsall

The purpose of this study was to compare lower extremity joint angular position and muscle activity during elliptical exercise using different foot positions and also during exercise on a lateral elliptical trainer. Sixteen men exercised on a lateral elliptical and on a standard elliptical trainer using straight foot position, increased toe-out angle, and a wide step. Motion capture and electromyography systems were used to obtain 3D lower extremity joint kinematics and muscle activity, respectively. The lateral trainer produced greater sagittal and frontal plane knee range of motion (ROM), greater peak knee flexion and extension, and higher vastus medialis activation compared with other conditions (P < .05). Toe-out and wide step produced the greatest and smallest peak knee adduction angles, respectively (P < .05). The lateral trainer produced greater sagittal and frontal plane hip ROM and greater peak hip extension and flexion compared with all other conditions (P < .05). Toe-out angle produced the largest peak hip external rotation angle and lowest gluteus muscle activation (P < .05). Findings from this study indicate that standard elliptical exercise with wide step may place the knee joint in a desirable frontal plane angular position to reduce medial knee loads, and that lateral elliptical exercise could help improve quadriceps strength but could also lead to larger knee contact forces.


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0002
Author(s):  
Nicole Mueske ◽  
Daniel T. Feifer ◽  
Curtis VandenBerg ◽  
J. Lee Pace ◽  
Mia J. Katzel ◽  
...  

BACKGROUND Dynamic limb valgus, combining hip adduction and internal rotation with knee abduction posture and moments, has been implicated in ACL injury. However, the contribution of static lower extremity alignment to dynamic limb valgus is unknown. This study assessed the relationships among lower extremity static alignment and dynamic kinematics and kinetics during side-step cutting in uninjured adolescent athletes. METHODS This prospective study included 88 limbs from 44 uninjured athletes aged 8-15 years (mean 12.3, SD 2.3; 19 (44%) female) who were evaluated during an anticipated 45° side-step cut. 3D lower extremity kinematics and kinetics from a custom 6 degree of freedom model were assessed while standing and during the loading phase of the cut from initial contact to peak knee flexion; 2-3 trials per limb were averaged for analysis. Femoral anteversion was measured for each limb with the participant lying prone. Relationships among static and dynamic measures were investigated using correlation and multiple linear regression. RESULTS In terms of static alignment, more static hip internal rotation and more static knee external rotation (tibia external relative to femur) were associated with more internal hip rotation and external knee rotation dynamically during cutting (r=0.34, p=0.001) (Table 1). Static hip adduction was also related to more external hip rotation and less hip flexion dynamically (p=0.24, p=0.02). More static knee abduction, external hip rotation and hip adduction were associated with higher average knee abduction angles during cutting (r=0.25, p=0.02). However, only static external knee rotation was associated with higher dynamic knee abduction moments (r=0.48, p<0.0001) (Figure 1). During cutting, positive associations were observed between hip flexion, knee flexion, and hip internal rotation (r=0.24, p=0.03). Knee adduction angles were related to more hip flexion, internal hip rotation, and knee external rotation (r=0.25, p=0.02). Additionally, lower peak knee flexion was associated with higher peak ground reaction force and more external knee rotation (r=0.24, p=0.02). Both simple correlation and multiple regression analysis indicated that higher knee abduction moments were related dynamically to higher knee abduction angles, greater knee external rotation, higher hip abduction angles, and greater hip internal rotation (R2=0.72, p<0.001). After considering dynamic metrics, no static measure remained significantly related to knee abduction moments. CONCLUSION/SIGNIFICANCE Static knee rotation was the only anatomic alignment measure associated with knee abduction moments during side-step cutting in uninjured adolescent athletes. Knee abduction moments were influenced more by dynamic posture than static alignment. As knee abduction moments have been implicated in ACL injury, this study supports the notion of dynamic limb valgus, specifically increased knee abduction and hip internal rotation, relating to ACL injury. Motion analysis can be used to identify these risky biomechanical patterns, and neuromuscular training can be used to correct them. Since knee abduction moments are primarily determined by dynamic posture, neuromuscular training can be used to reduce these moments and ACL injury risk. [Figure: see text][Table: see text]


2020 ◽  
pp. 1-8
Author(s):  
Soo-Yong Kim ◽  
Il-Young Yu ◽  
Min-Hyeok Kang

BACKGROUND: During one-leg standing (OLS), optimum activity of the gluteus medius (Gmed), multifidus (MF), and quadratus lumborum (QL) muscles relies upon maintaining neutral lumbopelvic alignment. However, no studies have examined how using pressure biofeedback during OLS affects the activity of these muscles and the concomitant alignment of the pelvis and trunk. OBJECTIVES: The purpose of this study was to investigate the effect of pressure biofeedback on the activity of the Gmed, MF, and QL and the femoropelvic and trunk lean angles during OLS. METHODS: Twenty-four healthy males performed OLS with (PB+) and without (PB-) pressure biofeedback. For all OLS conditions, a pressure sensor was placed between the lateral surface of the humerus on the non-supporting side and the wall. Under the PB- condition, participants performed preferred OLS while the examiner measured the maximum pressure caused by trunk lean. Under the PB+ condition, participants were asked to perform at a threshold of 50% of the maximal pressure (PB+ 1 condition) and with minimal change in pressure (PB+ 2 condition). Muscle activities of MF, QL, and Gmed as well as the femoropelvic and trunk lean angles were measured under various OLS conditions. RESULTS: The activity of the Gmed, MF, and QL was greater under both PB+ conditions than under the PB- condition (p< 0.05). Also, both PB+ conditions resulted in a greater femoropelvic angle and reduced trunk lean angle. There were no significant differences in muscle activity, femoropelvic angle, or trunk lean angle between PB+ 1 and PB+ 2 (p> 0.05). CONCLUSIONS: These results suggest that pressure biofeedback is a useful modality for increasing the activity of the Gmed and trunk muscles, especially the MF muscle on the non-supporting leg side, and for preventing compensatory movements such as trunk deviation and pelvic lateral deviation during OLS.


2020 ◽  
Vol 29 (8) ◽  
pp. 1075-1085
Author(s):  
Neal R. Glaviano ◽  
Ashley N. Marshall ◽  
L. Colby Mangum ◽  
Joseph M. Hart ◽  
Jay Hertel ◽  
...  

Context: Patellofemoral pain (PFP) is a challenging condition, with altered kinematics and muscle activity as 2 common impairments. Single applications of patterned electrical neuromuscular stimulation (PENS) have improved both kinematics and muscle activity in females with PFP; however, the use of PENS in conjunction with a rehabilitation program has not been evaluated. Objective: To determine the effects of a 4-week rehabilitation program with PENS on lower-extremity biomechanics and electromyography (EMG) during a single-leg squat (SLS) and a step-down task (SDT) in individuals with PFP. Study Design: Double-blinded randomized controlled trial. Setting: Laboratory. Patients of Other Participants: Sixteen females with PFP (age 23.3 [4.9] y, mass 66.3 [13.5] kg, height 166.1 [5.9] cm). Intervention: Patients completed a 4-week supervised rehabilitation program with or without PENS. Main Outcome Measures: Curve analyses for lower-extremity kinematics and EMG activity (gluteus maximus, gluteus medius, vastus medialis oblique, vastus lateralis, biceps femoris, and adductor longus) were constructed by plotting group means and 90% confidence intervals throughout 100% of each task, before and after the rehabilitation program. Mean differences (MDs) and SDs were calculated where statistical differences were identified. Results: No differences at baseline in lower-extremity kinematics or EMG were found between groups. Following rehabilitation, the PENS group had significant reduction in hip adduction between 29% and 47% of the SLS (MD = 4.62° [3.85°]) and between 43% and 69% of the SDT (MD = 6.55° [0.77°]). Throughout the entire SDT, there was a decrease in trunk flexion in the PENS group (MD = 10.91° [1.73°]). A significant decrease in gluteus medius activity was seen during both the SLS (MD = 2.77 [3.58]) and SDT (MD = 4.36 [5.38]), and gluteus maximus during the SLS (MD = 1.49 [1.46]). No differences were seen in the Sham group lower-extremity kinematics for either task. Conclusion: Rehabilitation with PENS improved kinematics in both tasks and decreased EMG activity. This suggests that rehabilitation with PENS may improve muscle function during functional tasks.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


Sign in / Sign up

Export Citation Format

Share Document