Gluteus Medius Activity during 3 Variations of Isometric Single-Leg Stance

2005 ◽  
Vol 14 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Jennifer E. Earl

Context:Gluteus medius (GM) contraction during single-leg stance prevents the contralateral pelvis from “dropping,” providing stability for lower extremity motion.Objective:To determine which combination of hip rotation and abduction exercise results in the greatest activity of the GM and whether the GM responds to increased loads in these exercises.Design and Setting:Repeated measures, laboratory.Subjects:20 healthy volunteers.Interventions:Resistance (2.26 and 4.53 kg) was provided to 3 variations of a single-leg-stance exercise: hip abduction only, abduction-internal rotation (ABD-IR), and abduction-external rotation.Measurements:Muscle activity was recorded from the anterior and middle portions of the GM using surface electromyography.Results:ABD-IR produced the most activity in the anterior and middle sections of the GM muscle. The 4.53-kg load produced significantly more activity than the 2.26-kg load (P< .05).Conclusions:The GM is most active when performing abduction and internal rotation of the hip. This information could be used to develop GM-strengthening exercises.

2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P&lt;.001), ABD-ER (F3,57 = 10.458, P&lt;.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2011 ◽  
Vol 20 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Catriona O’Dwyer ◽  
David Sainsbury ◽  
Kieran O’Sullivan

Context:Functional subdivisions are proposed to exist in the gluteus medius (GM) muscle. Dysfunction of the GM, in particular its functional subdivisions, is commonly implicated in lower limb pathologies. However, there is a lack of empirical evidence examining the role of the subdivisions of the GM.Objectives:To compare the activation of the functional subdivisions of the GM (anterior, middle, and posterior) during isometric hip contractions.Design:Single-session, repeated-measures observational study.Setting:University research laboratory.Participants:Convenience sample of 15 healthy, pain-free subjects.Intervention:Subjects performed 3 maximal voluntary isometric contractions for hip abduction and internal and external rotation on an isokinetic dynamometer with simultaneous recording of surface electromyography (sEMG) activity of the GM subdivisions.Main Outcome Measures:sEMG muscle activity for each functional subdivision of the GM during each hip movement was analyzed using a 1-way repeated-measures ANOVA (post hoc Bonferroni).Results:The response of GM subdivisions during the 3 different isometric contractions was significantly different (interaction effect; P = .003). The anterior GM displayed significantly higher activation across all 3 isometric contractions than the middle and posterior subdivisions (main effect; both P < .001). The middle GM also demonstrated significantly higher activation than the posterior GM across all 3 isometric contractions (main effect; P = .027). There was also significantly higher activation of all 3 subdivisions during both abduction and internal rotation than during external rotation (main effect; both P < .001).Conclusions:The existence of functional subdivisions in the GM appears to be supported by the findings. Muscle activation was not homogeneous throughout the entire muscle. The highest GM activation was found in the anterior GM subdivision and during abduction and internal rotation. Future studies should examine the role of GM functional subdivisions in subjects with lower limb pathologies.


2011 ◽  
Vol 46 (4) ◽  
pp. 376-385 ◽  
Author(s):  
Jennifer S. Howard ◽  
Melisa A. Fazio ◽  
Carl G. Mattacola ◽  
Timothy L. Uhl ◽  
Cale A. Jacobs

Context: Researchers have observed that medial knee collapse is a mechanism of knee injury. Lower extremity alignment, sex, and strength have been cited as contributing to landing mechanics. Objective: To determine the relationship among measurements of asymmetry of unilateral hip rotation (AUHR); mobility of the foot, which we described as relative arch deformity (RAD); hip abduction–external rotation strength; sex; and me-dial collapse of the knee during a single-leg jump landing. We hypothesized that AUHR and RAD would be positively correlated with movements often associated with medial collapse of the knee, including hip adduction and internal rotation excursions and knee abduction and rotation excursions. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty women and 15 men (age = 21 ± 2 years, height = 171.7 ± 9.5 cm, mass = 68.4 ± 9.5 kg) who had no history of surgery or recent injury and who participated in regular physical activity volunteered. Intervention(s): Participants performed 3 double-leg forward jumps with a single-leg landing. Three-dimensional kinematic data were sampled at 100 Hz using an electromagnetic tracking system. We evaluated AUHR and RAD on the preferred leg and evaluated isometric peak hip abductor–external rotation torque. We assessed AUHR by calculating the difference between internal and external hip rotation in the prone position (AUHR = internal rotation – external rotation). We evaluated RAD using the Arch Height Index Measurement System. Correlations and linear regression analyses were used to assess relationships among AUHR, RAD, sex, peak hip abduction–external rotation torque, and kinematic variables for 3-dimensional motion of the hip and knee. Main Outcome Measure(s): The dependent variables were joint angles at contact and joint excursions between contact and peak knee flexion. Results: We found that AUHR was correlated with hip adduction excursion (R = 0.36, P = .02). Asymmetry of unilateral hip rotation, sex, and peak hip abduction–external rotation torque were predictive of knee abduction excursion (adjusted R2 = 0.47, P &lt; .001). Asymmetry of unilateral hip rotation and sex were predictive of knee external rotation excursion (adjusted R2 = 0.23, P = .001). The RAD was correlated with hip adduction at contact (R2 = 0.10, R = 0.32, P = .04) and knee flexion excursion (R2 = 0.11, R = −0.34, P = .03). Conclusions: Asymmetry of unilateral hip rotation, sex, and hip strength were associated with kinematic components of medial knee collapse.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Phob Ganokroj ◽  
Nuchanun Sompornpanich ◽  
Pichitpol Kerdsomnuek ◽  
Bavornrat Vanadurongwan ◽  
Pisit Lertwanich

Abstract Background Measurement of hip rotation is a crucial clinical parameter for the identification of hip problems and the monitoring of symptoms. The objective of this study was to determine whether the use of two smartphone applications is valid and reliable for the measurement of hip rotation. Methods An experimental, cross-sectional study was undertaken to assess passive hip internal and external rotation in three positions by two examiners. The hip rotational angles were measured by a smartphone clinometer application in the sitting and prone positions, and by a smartphone compass application in the supine position; their results were compared with those of the standard, three-dimensional, motion analysis system. The validities and inter-rater and intra-rater reliabilities of the smartphone applications were evaluated. Results The study involved 24 participants. The validities were good to excellent for the internal rotation angles in all positions (ICC 0.81–0.94), good for the external rotation angles in the prone position (ICC 0.79), and fair for the sitting and supine positions (ICC 0.70–0.73). The measurement of the hip internal rotation in the supine position had the highest ICC value of 0.94 (0.91, 0.96). The two smartphone applications showed good-to-excellent intra-rater reliability, but good-to-excellent inter-rater reliability for only three of the six positions (two other positions had fair reliability, while one position demonstrated poor reliability). Conclusions The two smartphone applications have good-to-excellent validity and intra-rater reliability, but only fair-to-good inter-rater reliability for the measurement of the hip rotational angle. The most valid hip rotational position in this study was the supine IR angle measurement, while the lowest validity was the ER angle measurement in the sitting position. The smartphone application is one of the practical measurements in hip rotational angles. Trial registration Number 20181022003 at the Thai Clinical Trials Registry (http://www.clinicaltrials.in.th) which was retrospectively registered at 2018-10-18 15:30:29.


2007 ◽  
Vol 35 (8) ◽  
pp. 1371-1376 ◽  
Author(s):  
Todd S. Ellenbecker ◽  
Gail A. Ellenbecker ◽  
E. Paul Roetert ◽  
Rogerio Teixeira Silva ◽  
Greg Keuter ◽  
...  

Background Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Hypothesis Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Study Design Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Methods Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. Results No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10° identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater by a clinically insignificant mean value of 2.5°. Significantly less (P < .005) dominant hip internal rotation and less dominant and nondominant hip total rotation range of motion were found in the professional baseball pitchers compared with the elite male tennis players. Conclusion This study established typical range of motion patterns and identified bilaterally symmetric hip active range of motion rotation values in elite tennis players and professional baseball pitchers. Asymmetric hip joint rotational active range of motion encountered during clinical examination and screening may indicate abnormalities and would indicate the application of flexibility training, rehabilitation, and further evaluation.


2020 ◽  
Vol 22 (4) ◽  
pp. 34-47
Author(s):  
Tadashi Yasuda ◽  
Keiichi Oyanagi ◽  
Miyu Nakagaki ◽  
Hiromitsu Itoh

OBJECTIVES Dynamic knee valgus is composed of hip-knee coupling. While females differ from males in passive hip motion, hip rotation range may alter muscle mechanics and neuromuscular activity. This study aimed to compare knee abduction biomechanics during double-legged drop-landing between males and females with different hip rotation ranges.METHODS This study included five females with the range of hip internal rotation (IR) > the range of hip external rotation (ER), five females with ER>IR, four males with IR>ER, and five males with ER>IR. There was no difference in other hip motions among them or no difference in hip muscle strength between the same sex groups. Three-dimensional motion analyses of the hip and knee joints were performed during double-legged drop-landing.RESULTS Multiple regression analysis of females with IR>ER showed that peak knee abduction moment (KAM) was associated with maximal hip abduction moment before detecting peak KAM whereas peak knee abduction angle (KAA) correlated with no variable. In females with ER>IR, peak KAM was associated with maximal hip ER moment before detecting peak KAM, hip ER muscle strength and hip adduction range while peak KAA correlated with peak hip abduction moment before detecting peak KAM. In males with IR>ER, peak KAM was associated with hip ER range and hip adductor strength whereas peak KAA correlated with maximal hip ER moment and maximal hip IR angle during landing. In males with ER>IR, peak KAM was associated with hip extensor strength, hip abduction range and hip flexion range whereas peak KAA correlated with hip ER moment before detecting peak KAM, hip ER muscle strength, and hip adduction range.CONCLUSIONS Hip rotation range may differentially affect hip-knee coupling strategy for knee abduction control during double-legged drop-landing between males and females.


2018 ◽  
Vol 6 (6_suppl3) ◽  
pp. 2325967118S0004
Author(s):  
M Solana-Tramunt ◽  
R Lopez-Vidriero ◽  
E Lopez-Vidriero

Objectives: The aim of this study was to determine whether a static stretch of posterior deltoid could reduce the glenohumeral internal rotation deficit (GIRD) and the total arc of movement deficit (TAMD) in professional swimmers after competition. Methods: Participants: A total of 74 professional swimmers aged from 16-33 years volunteered to participated in the study. Their competition experience were more than 2 years at national level. All the subjects were informed in written and verbal form and signed their informed consent before being assessed. Design and procedures: A randomized repeated measures design was used to assess the glenohumeral rotation in 3 moments: prior to the race, just after finishing their trial and after performing a static passive stretch of posterior deltoid muscles of 90-sec. In randomized order the computer selected 20 subjects as a control group (CG) who didn’t perform the stretching. The experimental group (EG) included 54 swimmers. The glenohumeral internal and external rotation (IR and ER) were recorded by a video camera (IPhone 6 S, version 10.1), in sagittal plane, with the center of the screen at shoulder high. Subjects were laying on supine position over a massage table, with the glenohumeral joint at 90° of abduction, the elbow at 90° of flexion, and the researcher controlling the scapula movements by pushing the shoulder over coracoid apophasis. The App Thechnique (Ubersense ©) was used to measure the glenohumeral rotation degrees between the vertical line (controlled by a plumb) and the forearm segment. Results: The multifactorial ANOVA showed that there were significant differences on GIRD and TAMD between the experimental and the control group performing the stretching F(2,70)=49.150, P=0.000, η2p=0.992. The experimental group reduced the GIRD a16.2% and the TAMD a 6.7%. The dominant IR mean values changed significantly from 66.3±12.5 to 79.2±10.4 degrees for EG ( P=0.00) and non-significantly for CG, from 74.6±12.7 to 77.6±13.9 degrees ( P=0.11). The dominant TAM means changed significantly in EG from 173.2±16.8 to 192.0±17.0 degrees ( P=0.00) and non- significantly for CG 181.5±21.7 to 188.2±23.3 degrees ( P=0.12). Conclusion: To apply a static passive stretching on posterior deltoid during 90-sec reduced GIRD and the TAMD in professional swimmers after competition, which suggest a reduced risk of shoulder injury in these overhead athletes.


Sign in / Sign up

Export Citation Format

Share Document