Research on Water Seepage Detection Technology of Tunnel Asphalt Pavement Based on Deep Learning and Digital Image Processing

Author(s):  
Jiaqi Li ◽  
Zhaoyi He ◽  
Dongxue Li ◽  
Aichen Zheng

Abstract In order to improve the traffic safety of the tunnel pavement and reduce the impact of water seepage on the pavement structure, a convolutional neural network (CNN) model is established based on image detection technology to realize the identification, classification and statistics of pavement seepage. First, compared with the MobileNet network model, the deep learning model EfficientNet network model was built, and the accuracy of the two models was analyzed for pavement seepage recognition. The F1 Score was introduced to evaluate the accuracy and comprehensive performance of the two models for different types of seepage characteristics. Then the three gray processing methods, six threshold segmentation methods, as well as three filtering methods were compared to extract water seepage characteristics of digital image. Finally, based on the processed image, a calculation method of water seepage area was proposed to identify the actual asphalt pavement water seepage. The result shows that the recognition accuracy of the EfficientNet network model in the training set and the validation set are 99.85% and 97.53%, respectively, and the prediction accuracy is 98.00%. The accuracy of pavement water seepage recognition and prediction is better than the MobileNet network model. Using the cvtColor function for gray processing, using THRESH_BINARY for threshold segmentation, and using a combination of median filtering and morphological opening operations for image noise reduction can effectively extract water seepage characteristics. The water seepage area calculated by the proposed method has a small difference with the actual water seepage area, and the effect is agreeable.

2019 ◽  
Vol 56 (5) ◽  
pp. 1618-1632 ◽  
Author(s):  
Zenun Kastrati ◽  
Ali Shariq Imran ◽  
Sule Yildirim Yayilgan

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


2020 ◽  
pp. 1-10
Author(s):  
Colin J. McMahon ◽  
Justin T. Tretter ◽  
Theresa Faulkner ◽  
R. Krishna Kumar ◽  
Andrew N. Redington ◽  
...  

Abstract Objective: This study investigated the impact of the Webinar on deep human learning of CHD. Materials and methods: This cross-sectional survey design study used an open and closed-ended questionnaire to assess the impact of the Webinar on deep learning of topical areas within the management of the post-operative tetralogy of Fallot patients. This was a quantitative research methodology using descriptive statistical analyses with a sequential explanatory design. Results: One thousand-three-hundred and seventy-four participants from 100 countries on 6 continents joined the Webinar, 557 (40%) of whom completed the questionnaire. Over 70% of participants reported that they “agreed” or “strongly agreed” that the Webinar format promoted deep learning for each of the topics compared to other standard learning methods (textbook and journal learning). Two-thirds expressed a preference for attending a Webinar rather than an international conference. Over 80% of participants highlighted significant barriers to attending conferences including cost (79%), distance to travel (49%), time commitment (51%), and family commitments (35%). Strengths of the Webinar included expertise, concise high-quality presentations often discussing contentious issues, and the platform quality. The main weakness was a limited time for questions. Just over 53% expressed a concern for the carbon footprint involved in attending conferences and preferred to attend a Webinar. Conclusion: E-learning Webinars represent a disruptive innovation, which promotes deep learning, greater multidisciplinary participation, and greater attendee satisfaction with fewer barriers to participation. Although Webinars will never fully replace conferences, a hybrid approach may reduce the need for conferencing, reduce carbon footprint. and promote a “sustainable academia”.


2021 ◽  
Vol 184 ◽  
pp. 148-155
Author(s):  
Abdul Munem Nerabie ◽  
Manar AlKhatib ◽  
Sujith Samuel Mathew ◽  
May El Barachi ◽  
Farhad Oroumchian

Sign in / Sign up

Export Citation Format

Share Document