scholarly journals Mechanisms linking multi-year La Niña with preceding extreme El Niño

Author(s):  
Tomoki Iwakiri ◽  
Masahiro Watanabe

Abstract El Niño/La Niña, characterized by anomalous sea surface temperature warming/cooling in the central-eastern equatorial Pacific, is a dominant interannual variability with irregularity, impacting worldwide weather and socioeconomics. The observed records show that La Niña often persists for more than two years, called “multi-year La Niña” which tends to accompany extreme El Niño in the preceding year; however, the physical linkage between them remains unclear. Here we show using reanalysis data that an extreme El Niño excites atmospheric conditions that favor the generation of the multi-year La Niña in subsequent years. Easterly wind anomalies along the northern off-equator in the Pacific during the decay phase of an extreme El Niño are crucial. They act to discharge ocean heat content (OHC) via an anomalous northward Ekman transport; the negative OHC anomaly is large enough to be restored by a single La Niña and, therefore, causes another La Niña to occur in the second year. Furthermore, analyses of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models show that the occurrence frequencies of multi-year La Niña and extreme El Niño are highly correlated, supporting the abovementioned mechanism. Our results provide physical evidence that the increasing frequency of multi-year La Niña is explained by the increasing El Niño amplitude since the late 20th century.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoki Iwakiri ◽  
Masahiro Watanabe

AbstractEl Niño-Southern Oscillation (ENSO), characterized by anomalous sea surface temperature in the central-eastern equatorial Pacific, is a dominant interannual variability, impacting worldwide weather and socioeconomics. The ENSO cycle contains irregularity, in which La Niña often persists for more than two years, called “multi-year La Niña”. Observational records show that multi-year La Niña tends to accompany strong El Niño in the preceding year, but their physical linkage remains unclear. Here we show using reanalysis data that a strong El Niño excites atmospheric conditions that favor the generation of multi-year La Niña in subsequent years. Easterly wind anomalies along the northern off-equatorial Pacific during the decay phase of the strong El Niño are found crucial as they act to discharge ocean heat content (OHC) via an anomalous northward Ekman transport. The negative OHC anomaly is large enough to be restored by a single La Niña and, therefore, causes another La Niña to occur in the second year. Furthermore, analyses of the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models support the abovementioned mechanisms and indicate that the occurrence frequencies of multi-year La Niña and strong El Niño are highly correlated.


2019 ◽  
Vol 53 (9-10) ◽  
pp. 5799-5813 ◽  
Author(s):  
Sajedeh Marjani ◽  
Omid Alizadeh-Choobari ◽  
Parviz Irannejad

2019 ◽  
Vol 32 (21) ◽  
pp. 7483-7506 ◽  
Author(s):  
Yuntao Wei ◽  
Hong-Li Ren

Abstract This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.


2018 ◽  
Vol 31 (2) ◽  
pp. 877-893 ◽  
Author(s):  
Jingzhi Su ◽  
Renhe Zhang ◽  
Xinyao Rong ◽  
Qingye Min ◽  
Congwen Zhu

After the quick decaying of the 2015 super El Niño, the predicted La Niña unexpectedly failed to materialize to the anticipated standard in 2016. Diagnostic analyses, as well as numerical experiments, showed that this ENSO evolution of the 2015 super El Niño and the hindered 2016 La Niña may be essentially caused by sea surface temperature anomalies (SSTAs) in the subtropical Pacific. The self-sustaining SSTAs in the subtropical Pacific tend to weaken the trade winds during boreal spring–summer, leading to anomalous westerlies along the equatorial region over a period of more than one season. Such long-lasting wind anomalies provide an essential requirement for ENSO formation, particularly before a positive Bjerknes feedback is thoroughly built up between the oceanic and atmospheric states. Besides the 2015 super El Niño and the hindered La Niña in 2016, there were several other El Niño and La Niña events that cannot be explained only by the oceanic heat content in the equatorial Pacific. However, the questions related to those eccentric El Niño and La Niña events can be well explained by suitable SSTAs in the subtropical Pacific. Thus, the leading SSTAs in the subtropical Pacific can be treated as an independent indicator for ENSO prediction, on the basis of the oceanic heat content inherent in the equatorial region. Because ENSO events have become more uncertain under the background of global warming and the Pacific decadal oscillation during recent decades, thorough investigation of the role of the subtropical Pacific in ENSO formation is urgently needed.


2019 ◽  
Author(s):  
Abdul Malik ◽  
Peer J. Nowack ◽  
Joanna D. Haigh ◽  
Long Cao ◽  
Luqman Atique ◽  
...  

Abstract. Many modelling studies suggest that the El Niño Southern Oscillation (ENSO), in interaction with the tropical Pacific background climate, will change under rising atmospheric greenhouse gas concentrations. Solar geoengineering (reducing the solar flux from outer space) has been proposed as a means to counteract anthropogenic greenhouse-induced changes in climate. Effectiveness of solar geoengineering is uncertain. Robust results are particularly difficult to obtain for ENSO because existing geoengineering simulations are too short (typically ~ 50 years) to detect statistically significant changes in the highly variable tropical Pacific background climate. We here present results from a 1000-year sunshade geoengineering simulation, G1, carried out with the coupled atmosphere-ocean general circulation model HadCM3L. In agreement with previous studies, reducing the shortwave solar flux more than compensates the warming in the tropical Pacific that develops in the 4×CO2 scenario: we observe an overcooling of 0.3 °C (5 %) and 0.23-mm day−1 (5 %) reduction in mean rainfall relative to preindustrial conditions in the G1 simulation. This is due to the different latitudinal distributions of the shortwave (solar) and longwave (CO2) forcings.The location of the Intertropical Convergence Zone (ITCZ) located north of equator in the tropical Pacific, which moved 7.5° southwards under 4×CO2, is also restored to its preindustrial location. However, other aspects of the tropical Pacific mean climate are not reset as effectively. Relative to preindustrial conditions, in G1 the zonal wind stress, zonal sea surface temperature (SST) gradient, and meridional SST gradient are reduced by 10 %, 11 %, and 9 %, respectively, and the Pacific Walker Circulation (PWC) is consistently weakened. The overall amplitude of ENSO strengthens by 5–8 %, but there is a 65 % reduction in the asymmetry between cold and warm events: cold events intensify more than warm events. Importantly, the frequency of extreme El Niño and La Niña events increases by 44 % and 32 %, respectively, while the total number of El Niño events increases by 12 %. Paradoxically, while the number of total and extreme events increase, the most extreme El Niño events also become weaker relative to preindustrial state while the La Niña events become stronger. That is, extreme El Niño events in G1 become less extreme than in preindustrial conditions, but extreme El Niño events become more frequent. In contrast, extreme La Niña events become stronger in G1. This is in agreement with the general overcooling of the tropical Pacific in G1 relative to preindustrial conditions, which depict a shift towards generally more La Niña-like conditions.


2006 ◽  
Vol 19 (9) ◽  
pp. 1784-1801 ◽  
Author(s):  
Jong-Seong Kug ◽  
In-Sik Kang

Abstract A feedback process of the Indian Ocean SST on ENSO is investigated by using observed data and atmospheric GCM. It is suggested that warming in the Indian Ocean produces an easterly wind stress anomaly over Indonesia and the western edge of the Pacific during the mature phase of El Niño. The anomalous easterly wind in the western Pacific during El Niño helps a rapid termination of El Niño and a fast transition to La Niña by generating upwelling Kelvin waves. Thus, warming in the Indian Ocean, which is a part of the El Niño signal, operates as a negative feedback mechanism to ENSO. This Indian Ocean feedback appears to operate mostly for relatively strong El Niños and results in a La Niña one year after the mature phase of the El Niño. This 1-yr period of phase transition implies a possible role of Indian Ocean–ENSO coupling in the biennial tendency of the ENSO. Atmospheric GCM experiments show that Indian Ocean SST forcing is mostly responsible for the easterly wind anomalies in the western Pacific.


2020 ◽  
pp. 1-61
Author(s):  
Hanjie Fan ◽  
Bohua Huang ◽  
Song Yang ◽  
Wenjie Dong

AbstractThis study investigates the mechanisms behind the Pacific Meridional Mode (PMM) in influencing the development of El Niño-Southern Oscillation (ENSO) event and its seasonal predictability. To examine the relative importance of various factors that may modulate the efficiency of the PMM influence, a series of experiments are conducted for selected ENSO events with different intensity using the Community Earth System Model, in which ensemble predictions are made from slightly different ocean initial states but under a common prescribed PMM surface heat flux forcing. Overall, the matched PMM forcing to ENSO, i.e., a positive (negative) PMM prior to an El Niño (a La Niña), plays an enhancing role, while a mismatched PMM forcing plays a damping role. For the matched cases, a positive PMM event enhances an El Niño more strongly than a negative PMM event enhances a La Niña. This asymmetry in influencing ENSO largely originates from the asymmetry in intensity between the positive and negative PMM events in the tropics, which can be explained by the nonlinearity in the growth and equatorward propagation of the PMM-related anomalies of sea surface temperature (SST) and surface zonal wind through both wind-evaporation-SST feedback and summer deep convection response. Our model results also indicate that the PMM acts as a modulator rather than a trigger for the occurrence of ENSO event. Furthermore, the response of ENSO to an imposed PMM forcing is modulated by the preconditioning of the upper-ocean heat content, which provides the memory for the coupled low-frequency evolution in the tropical Pacific.


2018 ◽  
Vol 45 (18) ◽  
pp. 9824-9833 ◽  
Author(s):  
Yann Planton ◽  
Jérôme Vialard ◽  
Eric Guilyardi ◽  
Matthieu Lengaigne ◽  
Takeshi Izumo

2008 ◽  
Vol 21 (21) ◽  
pp. 5688-5707 ◽  
Author(s):  
Michael A. Alexander ◽  
James D. Scott

Abstract The influence of oceanic Ekman heat transport (Qek) on air–sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the mixed layer model (MLM) experiment, observed sea surface temperatures (SSTs) for the years 1950–99 are specified over the tropical Pacific, while a grid of mixed layer models is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the Ekman transport/mixed layer model (EKM) experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment. In both experiments the Aleutian low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek amplified the ENSO-related SSTs by ∼⅓ in the central and northeast North Pacific, producing anomalies comparable to those in nature. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific. The sea level pressure (SLP) and SST response to ENSO over the Atlantic strongly projects on the North Atlantic Oscillation (NAO) and the SST tripole pattern in observations and both model experiments. The La Niña anomalies, which are stronger than during El Niño, include high pressure and positive SSTs in the central North Atlantic. Including Ekman transport enhanced the Atlantic SST anomalies, which in contrast to the Pacific, appeared to strengthen the overlying atmospheric circulation.


2005 ◽  
Vol 18 (16) ◽  
pp. 3229-3239 ◽  
Author(s):  
Soon-Il An ◽  
William W. Hsieh ◽  
Fei-Fei Jin

Abstract The nonlinear principal component analysis (NLPCA), via a neural network approach, was applied to thermocline anomalies in the tropical Pacific. While the tropical sea surface temperature (SST) anomalies had been nonlinearly mapped by the NLPCA mode 1 onto an open curve in the data space, the thermocline anomalies were mapped to a closed curve, suggesting that ENSO is a cyclic phenomenon. The NLPCA mode 1 of the thermocline anomalies reveals the nonlinear evolution of the ENSO cycle with much asymmetry for the different phases: The weak heat accumulation in the whole equatorial Pacific is followed by the strong El Niño, and the subsequent strong drain of equatorial heat content toward the off-equatorial region precedes a weak La Niña. This asymmetric ENSO evolution implies that the nonlinear instability enhances the growth of El Niño, but dwarfs the growth of La Niña. The nonlinear ENSO cycle was found to have changed since the late 1970s. For the pre-1980s the ENSO cycle associated with the thermocline is less asymmetrical than that during the post-1980s, indicating that the nonlinearity of the ENSO cycle has become stronger since the late 1970s.


Sign in / Sign up

Export Citation Format

Share Document