scholarly journals Mechanisms linking multi-year La Niña with preceding strong El Niño

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoki Iwakiri ◽  
Masahiro Watanabe

AbstractEl Niño-Southern Oscillation (ENSO), characterized by anomalous sea surface temperature in the central-eastern equatorial Pacific, is a dominant interannual variability, impacting worldwide weather and socioeconomics. The ENSO cycle contains irregularity, in which La Niña often persists for more than two years, called “multi-year La Niña”. Observational records show that multi-year La Niña tends to accompany strong El Niño in the preceding year, but their physical linkage remains unclear. Here we show using reanalysis data that a strong El Niño excites atmospheric conditions that favor the generation of multi-year La Niña in subsequent years. Easterly wind anomalies along the northern off-equatorial Pacific during the decay phase of the strong El Niño are found crucial as they act to discharge ocean heat content (OHC) via an anomalous northward Ekman transport. The negative OHC anomaly is large enough to be restored by a single La Niña and, therefore, causes another La Niña to occur in the second year. Furthermore, analyses of the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models support the abovementioned mechanisms and indicate that the occurrence frequencies of multi-year La Niña and strong El Niño are highly correlated.

2020 ◽  
Author(s):  
Tomoki Iwakiri ◽  
Masahiro Watanabe

Abstract El Niño/La Niña, characterized by anomalous sea surface temperature warming/cooling in the central-eastern equatorial Pacific, is a dominant interannual variability with irregularity, impacting worldwide weather and socioeconomics. The observed records show that La Niña often persists for more than two years, called “multi-year La Niña” which tends to accompany extreme El Niño in the preceding year; however, the physical linkage between them remains unclear. Here we show using reanalysis data that an extreme El Niño excites atmospheric conditions that favor the generation of the multi-year La Niña in subsequent years. Easterly wind anomalies along the northern off-equator in the Pacific during the decay phase of an extreme El Niño are crucial. They act to discharge ocean heat content (OHC) via an anomalous northward Ekman transport; the negative OHC anomaly is large enough to be restored by a single La Niña and, therefore, causes another La Niña to occur in the second year. Furthermore, analyses of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models show that the occurrence frequencies of multi-year La Niña and extreme El Niño are highly correlated, supporting the abovementioned mechanism. Our results provide physical evidence that the increasing frequency of multi-year La Niña is explained by the increasing El Niño amplitude since the late 20th century.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michiya Hayashi ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections.


2019 ◽  
Vol 32 (21) ◽  
pp. 7483-7506 ◽  
Author(s):  
Yuntao Wei ◽  
Hong-Li Ren

Abstract This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.


2013 ◽  
Vol 5 (2) ◽  
pp. 148-161 ◽  
Author(s):  
Iván J. Ramírez ◽  
Sue C. Grady ◽  
Michael H. Glantz

Abstract In the 1990s Peru experienced the first cholera epidemic after almost a century. The source of emergence was initially attributed to a cargo ship, but later there was evidence of an El Niño association. It was hypothesized that marine ecosystem changes associated with El Niño led to the propagation of V. cholerae along the coast of Peru, which in turn initiated the onset of the epidemic in 1991. Earlier studies supported this explanation by demonstrating a relationship between elevated temperatures and increased cholera incidence in Peru; however, other aspects of El Niño–Southern Oscillation (ENSO) and their potential impacts on cholera were not investigated. Therefore, this study examines the relationship between El Niño and cholera in Peru from a holistic view of the ENSO cycle. A “climate affairs” approach is employed as a conceptual framework to incorporate ENSO’s multidimensional nature and to generate new hypotheses about the ENSO and cholera association in Peru. The findings reveal that ENSO may have been linked to the cholera epidemic through multiple pathways, including rainfall extremes, La Niña, and social vulnerability, with impacts depending on the geography of teleconnections within Peru. When the definition of an ENSO event is examined, cholera appears to have emerged either during ENSO neutral or La Niña conditions. Furthermore, the analysis herein suggests that the impact of El Niño arrived much later, possibly resulting in heightened transmission in the austral summer of 1992. In conclusion, a modified hypothesis with these new insights on cholera emergence and transmission in Peru is presented.


2007 ◽  
Vol 20 (20) ◽  
pp. 5164-5177 ◽  
Author(s):  
Ying Li ◽  
Riyu Lu ◽  
Buwen Dong

Abstract In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle. By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.


2020 ◽  
pp. 1-61
Author(s):  
Hanjie Fan ◽  
Bohua Huang ◽  
Song Yang ◽  
Wenjie Dong

AbstractThis study investigates the mechanisms behind the Pacific Meridional Mode (PMM) in influencing the development of El Niño-Southern Oscillation (ENSO) event and its seasonal predictability. To examine the relative importance of various factors that may modulate the efficiency of the PMM influence, a series of experiments are conducted for selected ENSO events with different intensity using the Community Earth System Model, in which ensemble predictions are made from slightly different ocean initial states but under a common prescribed PMM surface heat flux forcing. Overall, the matched PMM forcing to ENSO, i.e., a positive (negative) PMM prior to an El Niño (a La Niña), plays an enhancing role, while a mismatched PMM forcing plays a damping role. For the matched cases, a positive PMM event enhances an El Niño more strongly than a negative PMM event enhances a La Niña. This asymmetry in influencing ENSO largely originates from the asymmetry in intensity between the positive and negative PMM events in the tropics, which can be explained by the nonlinearity in the growth and equatorward propagation of the PMM-related anomalies of sea surface temperature (SST) and surface zonal wind through both wind-evaporation-SST feedback and summer deep convection response. Our model results also indicate that the PMM acts as a modulator rather than a trigger for the occurrence of ENSO event. Furthermore, the response of ENSO to an imposed PMM forcing is modulated by the preconditioning of the upper-ocean heat content, which provides the memory for the coupled low-frequency evolution in the tropical Pacific.


2021 ◽  
pp. 1-47
Author(s):  
XIAODAN YANG ◽  
YAJUAN SONG ◽  
MENG WEI ◽  
YUHUAN XUE ◽  
ZHENYA SONG

AbstractIn this paper, the different effects of the eastern equatorial Pacific (EP) and central equatorial Pacific (CP) El Niño-Southern Oscillation (ENSO) events on interannual variation in the diurnal sea surface temperature (SST) are explored in both the Niño 3 and Niño 4 regions. In the Niño 3 region, the diurnal SST anomaly (DSSTA) is negative during both EP and CP El Niño events and becomes positive during both EP and CP La Niña events. However, the DSSTA in the Niño 4 region is positive in El Niño years and negative in La Niña years, which is opposite to that in the Niño 3 region. Further analysis indicates that the incident shortwave radiation (SWR), wind stress (WS), and upward latent heat flux (LHF) are the main factors causing the interannual variation in the DSST. In the Niño 3 region, the decreased/increased SWR and the increased (decreased) LHF lead to the negative (positive) DSSTA in EP El Niño (La Niña) years. In addition, the enhanced (reduced) WS and the increased (decreased) LHF cause the negative (positive) DSSTA in CP El Niño (La Niña) years. In the Niño 4 region, the reduced (enhanced) trade wind plays a key role in producing in the positive (negative) DSSTA, while the decreased (increased) SWR has an opposite effect that reduces/increases the range of the DSSTA during both EP and CP El Niño (La Niña) events.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The Earth's climate is constantly changing. Some of the changes are progressive, while others fluctuate at various time scales. The El Niño-la Niña cycle is one such fluctuation that recurs every few years and has far-reaching impacts. It generally appears at least once per decade, but this may vary with our changing climate. The exact frequency, sequence, duration and intensity of El Niño's manifestations, as well as its effects and geographic distributions, are highly variable. The El Niño-la Niña cycle is particularly challenging to study due to its many interlinked phenomena that occur in various locations around the globe. These worldwide teleconnections are precisely what makes studying El Niño-la Niña so important. Cynthia Rosenzweig and Daniel Hillel describe the current efforts to develop and apply a global-to-regional approach to climate-risk management. They explain how atmospheric and social scientists are cooperating with agricultural practitioners in various regions around the world to determine how farmers may benefit most from new climate predictions. Specifically, the emerging ability to predict the El Niño-Southern Oscillation (ENSO) cycle offers the potential to transform agricultural planning worldwide. Biophysical scientists are only now beginning to recognize the large-scale, globally distributed impacts of ENSO on the probabilities of seasonal precipitation and temperature regimes. Meanwhile, social scientists have been researching how to disseminate forecasts more effectively within rural communities. Consequently, as the quality of climatic predictions have improved, the dissemination and presentation of forecasts have become more effective as well. This book explores the growing understanding of the interconnectedness of climate predictions and productive agriculture for sustainable development, as well as methods and models used to study this relationship.


2005 ◽  
Vol 18 (16) ◽  
pp. 3229-3239 ◽  
Author(s):  
Soon-Il An ◽  
William W. Hsieh ◽  
Fei-Fei Jin

Abstract The nonlinear principal component analysis (NLPCA), via a neural network approach, was applied to thermocline anomalies in the tropical Pacific. While the tropical sea surface temperature (SST) anomalies had been nonlinearly mapped by the NLPCA mode 1 onto an open curve in the data space, the thermocline anomalies were mapped to a closed curve, suggesting that ENSO is a cyclic phenomenon. The NLPCA mode 1 of the thermocline anomalies reveals the nonlinear evolution of the ENSO cycle with much asymmetry for the different phases: The weak heat accumulation in the whole equatorial Pacific is followed by the strong El Niño, and the subsequent strong drain of equatorial heat content toward the off-equatorial region precedes a weak La Niña. This asymmetric ENSO evolution implies that the nonlinear instability enhances the growth of El Niño, but dwarfs the growth of La Niña. The nonlinear ENSO cycle was found to have changed since the late 1970s. For the pre-1980s the ENSO cycle associated with the thermocline is less asymmetrical than that during the post-1980s, indicating that the nonlinearity of the ENSO cycle has become stronger since the late 1970s.


2019 ◽  
Vol 32 (18) ◽  
pp. 5941-5965 ◽  
Author(s):  
Xian Wu ◽  
Yuko M. Okumura ◽  
Pedro N. DiNezio

Abstract The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration.


Sign in / Sign up

Export Citation Format

Share Document