scholarly journals In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition

Author(s):  
Tingting Yang ◽  
Hui Li ◽  
Yongfu Tang ◽  
Jingzhao Chen ◽  
Hongjun Ye ◽  
...  

Abstract The growth of lithium (Li) whiskers is detrimental to Li batteries. However, it remains a challenge to directly track Li whisker growth. Here we report in situ observations of electrochemically induced Li deposition under a CO2 atmosphere inside an environmental transmission electron microscope. We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase (SEI). When cracking overwhelms self-healing, the directional growth of Li whiskers predominates. In contrast, when self-healing dominates over cracking, the isotropic growth of round Li particles prevails. The Li deposition rate and SEI constituent can be tuned to control the Li morphologies. We reveal a new “weak-spot” mode of Li dendrite growth, which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section. This work has implications for the control of Li dendrite growth in Li batteries.

2014 ◽  
Vol 20 (4) ◽  
pp. 1029-1037 ◽  
Author(s):  
Raymond R. Unocic ◽  
Xiao-Guang Sun ◽  
Robert L. Sacci ◽  
Leslie A. Adamczyk ◽  
Daan Hein Alsem ◽  
...  

AbstractComplex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.


Author(s):  
Yuzhu Chu ◽  
Shu Zhang ◽  
Shuang Wu ◽  
Zhenglin Hu ◽  
Guanglei Cui ◽  
...  

In-situ constructing multifunctional solid electrolyte interphase (SEI) for Zn anode is promising to address the dendrite growth and side reactions (corrosion and hydrogen evolution) in aqueous Zn-ion batteries. However, there...


Author(s):  
Jun Pu ◽  
Chenglin Zhong ◽  
Jiahao Liu ◽  
Zhenghua Wang ◽  
Dongliang Chao

Li/Na metal anodes, based on their high theoretical capacity and low electrochemical potential, provide promising alternatives for next-generation high energy batteries. However, their unstable solid-electrolyte interphase and dendrite growth remain...


Author(s):  
Xiaohui Zeng ◽  
Kaixuan Xie ◽  
Sailin Liu ◽  
Shilin Zhang ◽  
Junnan Hao ◽  
...  

Solid-electrolyte interphase (SEI) is highly designable to restrain Zn dendrite growth and side reactions between Zn anode and water in rechargeable aqueous zinc-ion batteries (RAZBs), but it remains a challenge....


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Sign in / Sign up

Export Citation Format

Share Document