scholarly journals Insights from macroevolutionary modelling and ancestral state reconstruction into the radiation and historical dietary ecology of Lemuriformes (Primates, Mammalia)

Author(s):  
Ethan Fulwood ◽  
Shan Shan ◽  
Julia Winchester ◽  
Henry Kirveslahti ◽  
Robert Ravier ◽  
...  

Abstract The lemurs are a highly species-rich clade of primates, which, confined almost entirely to the island of Madagascar, have evolved to rival the diversity of rest of the primate order. We test the adaptive radiation model of Malagasy lemur diversity using a novel combination of phylogenetic comparative methods and geometric methods for quantifying tooth shape. We apply macroevolutionary model fitting approaches and disparity through time analysis to dental topography metrics associated with dietary adaptation, an aspect of mammalian ecology which appears to closely related to diversification in many clades. Metrics were also reconstructed at internal nodes of the lemur tree and these reconstructions were combined to generate dietary classification probabilities at internal nodes using discriminant function analysis. We used these reconstructions to calculate rates of transition toward folivory per million-year intervals. Finally, lower second molar shape was reconstructed at internal nodes by modelling the change in shape of 3D meshes using squared change parsimony along the branches of the lemur tree. Our analyses of dental topography metrics do not recover an early burst in rates of change or a pattern of early partitioning of subclade disparity. However, rates of change in adaptations for folivory were highest during the Oligocene, an interval of possible forest expansion on the island. Reconstruction of the molar morphologies corresponding to the ancestral nodes of the lemur tree suggest that this may have been driven by a shift toward defended plant resources.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ethan L. Fulwood ◽  
Shan Shan ◽  
Julia M. Winchester ◽  
Henry Kirveslahti ◽  
Robert Ravier ◽  
...  

Abstract Background Lemurs once rivalled the diversity of rest of the primate order despite thier confinement to the island of Madagascar. We test the adaptive radiation model of Malagasy lemur diversity using a novel combination of phylogenetic comparative methods and geometric methods for quantifying tooth shape. Results We apply macroevolutionary model fitting approaches and disparity through time analysis to dental topography metrics associated with dietary adaptation, an aspect of mammalian ecology which appears to be closely related to diversification in many clades. Metrics were also reconstructed at internal nodes of the lemur tree and these reconstructions were combined to generate dietary classification probabilities at internal nodes using discriminant function analysis. We used these reconstructions to calculate rates of transition toward folivory per million-year intervals. Finally, lower second molar shape was reconstructed at internal nodes by modelling the change in shape of 3D meshes using squared change parsimony along the branches of the lemur tree. Our analyses of dental topography metrics do not recover an early burst in rates of change or a pattern of early partitioning of subclade disparity. However, rates of change in adaptations for folivory were highest during the Oligocene, an interval of possible forest expansion on the island. Conclusions There was no clear phylogenetic signal of bursts of morphological evolution early in lemur history. Reconstruction of the molar morphologies corresponding to the ancestral nodes of the lemur tree suggest that this may have been driven by a shift toward defended plant resources, however. This suggests a response to the ecological opportunity offered by expanding forests, but not necessarily a classic adaptive radiation initiated by dispersal to Madagascar.


1976 ◽  
Vol 55 (4) ◽  
pp. 633-638 ◽  
Author(s):  
B. Prahl-Andersen ◽  
J. Oerlemans

Tooth size and morphology in 35 participants with trisomy G and in 33 controls have been studied. Special attention has been paid to the mean cusp pattern of the upper first and second molar. The classification matrix for the linear discriminant function analysis between participants with trisomy G and controls based on five selected variables showed three misclassifications.


Paleobiology ◽  
2021 ◽  
pp. 1-20
Author(s):  
Ethan L. Fulwood ◽  
Shan Shan ◽  
Julia M. Winchester ◽  
Tingran Gao ◽  
Henry Kirveslahti ◽  
...  

Abstract The morphological and ecological diversity of lemurs and lorisiformes once rivaled that of the rest of the primate order. Here, we assemble a dataset of 3D models representing the second mandibular molars of a wide range of extant and fossil strepsirrhines encompassing this diversity. We use these models to distill quantitative descriptors of tooth form and then analyze these data using new analytical methods. We employ a recently developed dental topography metric (ariaDNE), which is less sensitive to details of random error in 3D model quality than previously used metrics (e.g., DNE); Bayesian multinomial modeling with metrics designed to measure overfitting risk; and a tooth segmentation algorithm that allows the shapes of disaggregated tooth surface features to be quantified using dental topography metrics. This approach is successful at reclassifying extant strepsirrhine primates to known dietary ecology and indicates that the averaging of morphological information across the tooth surface does not interfere with the ability of dental topography metrics to predict dietary adaptation. When the most informative combination of dental topography metrics is applied to extinct species, many subfossil lemurs and the most basal fossil strepsirrhines are predicted to have been primarily frugivorous or gummivorous. This supports an ecological contraction among the extant lemurs and the importance of frugivory in the origins of crown Strepsirrhini, potentially to avoid competition with more insectivorous and folivorous members of Paleogene Afro-Arabian primate faunas.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182389 ◽  
Author(s):  
Zachary S. Morris ◽  
Kent A. Vliet ◽  
Arhat Abzhanov ◽  
Stephanie E. Pierce

The distinctive anatomy of the crocodylian skull is intimately linked with dietary ecology, resulting in repeated convergence on blunt- and slender-snouted ecomorphs. These evolutionary shifts depend upon modifications of the developmental processes which direct growth and morphogenesis. Here we examine the evolution of cranial ontogenetic trajectories to shed light on the mechanisms underlying convergent snout evolution. We use geometric morphometrics to quantify skeletogenesis in an evolutionary context and reconstruct ancestral patterns of ontogenetic allometry to understand the developmental drivers of craniofacial diversity within Crocodylia. Our analyses uncovered a conserved embryonic region of morphospace (CER) shared by all non-gavialid crocodylians regardless of their eventual adult ecomorph. This observation suggests the presence of conserved developmental processes during early development (before Ferguson stage 20) across most of Crocodylia. Ancestral state reconstruction of ontogenetic trajectories revealed heterochrony, developmental constraint, and developmental systems drift have all played essential roles in the evolution of ecomorphs. Based on these observations, we conclude that two separate, but interconnected, developmental programmes controlling craniofacial morphogenesis and growth enabled the evolutionary plasticity of skull shape in crocodylians.


2020 ◽  
Vol 94 (6) ◽  
pp. 1202-1212
Author(s):  
Keegan R. Selig ◽  
Eric J. Sargis ◽  
Stephen G.B. Chester ◽  
Mary T. Silcox

AbstractTreeshrews are small, Indomalayan mammals closely related to primates. Previously, three-dimensional geometric morphometric analyses were used to assess patterns of treeshrew lower second molar morphology, which showed that the positions of molar landmarks covary with intraordinal systematics. Another analysis used dental topographic metrics to test patterns of functional dental morphology and found that molar curvature, complexity, and relief were an effective means for examining patterns of variation in treeshrew dietary ecology. Here, we build on these analyses by adding two fossil taxa, Prodendrogale yunnanica Qiu, 1986 from the Miocene of China and Ptilocercus kylin Li and Ni, 2016 from the Oligocene of China. Our results show that Pr. yunnanica had a dental bauplan more like that of a tupaiid than that of a ptilocercid, but that the extant tupaiids, including Tupaia and Dendrogale, are more similar to one another in this regard than any are to Prodendrogale. This is contrary to our expectations as Prodendrogale is hypothesized to be most closely related to Dendrogale. Ptilocercus kylin, which has been proposed to be the sister taxon of Pt. lowii Gray, 1848, is characterized by dental morphology like that of Pt. lowii in crest and cuspal position but is interpreted to have been more frugivorous. It has been claimed that Ptilocercus has undergone little morphological change through time. Our results suggest that Pt. kylin was more ecologically distinct from Pt. lowii than previously proposed, providing a glimpse into a more complex evolutionary history of the group than had been inferred.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2019 ◽  
Vol 28 (4) ◽  
pp. 834-842
Author(s):  
Harini Vasudevan ◽  
Hari Prakash Palaniswamy ◽  
Ramaswamy Balakrishnan

Purpose The main purpose of the study is to explore the auditory selective attention abilities (using event-related potentials) and the neuronal oscillatory activity in the default mode network sites (using electroencephalogram [EEG]) in individuals with tinnitus. Method Auditory selective attention was measured using P300, and the resting state EEG was assessed using the default mode function analysis. Ten individuals with continuous and bothersome tinnitus along with 10 age- and gender-matched control participants underwent event-related potential testing and 5 min of EEG recording (at wakeful rest). Results Individuals with tinnitus were observed to have larger N1 and P3 amplitudes along with prolonged P3 latency. The default mode function analysis revealed no significant oscillatory differences between the groups. Conclusion The current study shows changes in both the early sensory and late cognitive components of auditory processing. The change in the P3 component is suggestive of selective auditory attention deficit, and the sensory component (N1) suggests an altered bottom-up processing in individuals with tinnitus.


Methodology ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 156-164 ◽  
Author(s):  
Keith A. Markus

Abstract. Bollen and colleagues have advocated the use of formative scales despite the fact that formative scales lack an adequate underlying theory to guide development or validation such as that which underlies reflective scales. Three conceptual impediments impede the development of such theory: the redefinition of measurement restricted to the context of model fitting, the inscrutable notion of conceptual unity, and a systematic conflation of item scores with attributes. Setting aside these impediments opens the door to progress in developing the needed theory to support formative scale use. A broader perspective facilitates consideration of standard scale development concerns as applied to formative scales including scale development, item analysis, reliability, and item bias. While formative scales require a different pattern of emphasis, all five of the traditional sources of validity evidence apply to formative scales. Responsible use of formative scales requires greater attention to developing the requisite underlying theory.


Sign in / Sign up

Export Citation Format

Share Document