scholarly journals Astrocytic Microdomains Confine A “molecular Memory” Enabling Long-Term Information Storage for Memory Consolidation

Author(s):  
Beatrice Vignoli ◽  
Gabriele Sansevero ◽  
Manju Sasi ◽  
Roberto Rimondini-Giorgini ◽  
Robert Blum ◽  
...  

Abstract Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation (molecular memory). This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Beatrice Vignoli ◽  
Gabriele Sansevero ◽  
Manju Sasi ◽  
Roberto Rimondini ◽  
Robert Blum ◽  
...  

AbstractMemory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits.


2017 ◽  
Vol 13 (7S_Part_26) ◽  
pp. P1270-P1270
Author(s):  
Sylvie Bretin ◽  
Albert Giralt ◽  
María Ángeles Gómez-Climent ◽  
Rafael Alcalá ◽  
Jose Maria Delgado-Garcia ◽  
...  

2013 ◽  
Vol 105 ◽  
pp. 174-185 ◽  
Author(s):  
Shannon J. Moore ◽  
Kaivalya Deshpande ◽  
Gwen S. Stinnett ◽  
Audrey F. Seasholtz ◽  
Geoffrey G. Murphy

2003 ◽  
Vol 50 (3) ◽  
pp. 775-782 ◽  
Author(s):  
Edward Korzus

A distinction between short-term memories lasting minutes to hours and long-term memories lasting for many days is that the formation of long-term memories requires new gene expression. In this review, the focus is on the current understanding of the relation of transcription to memory consolidation based on the data collected from behavioral studies performed primarily on genetically altered animals. Studies in Drosophila and Aplysia indicate that the transcription factor cAMP/Ca(2+) response element binding protein (CREB) is critical in mediating the conversion from short- to long-term memory. More recent genetic studies in mice also demonstrated CREB and inducible transcription factor Zif268 involvement in information storage processes. Transcription seems to play essential role in memory formation but the mechanisms for activation of transcription and downstream processes during memory consolidation remain unclear.


2020 ◽  
Author(s):  
Fernando Muñoz-Lobato ◽  
Kelli L. Benedetti ◽  
Fatima Farah ◽  
Rashmi Chandra ◽  
Anirudh Bokka ◽  
...  

SummarySleep is conserved across phyla and is shown here to be required for memory consolidation in the nematode, C. elegans. However, it is unclear how sleep collaborates with experience to change specific neurons and associated synapses to ultimately affect behavior. C. elegans neurons have defined synaptic connections and described contributions to specific behaviors. We show that spaced odor-training induces long-term memory, which transits a labile period before being stably maintained. This post-training labile period is required for long-term memory. Memory consolidation, but not acquisition, requires a single interneuron, AIY, which plays a role in odor-seeking behavior. We find that sleep and conditioning mark inhibitory synaptic connections between the butanone-sensing AWC neuron and AIY to decrease synapses and it is in the post-sleep wake phase that memory-specific synaptic changes occur. Thus, we demonstrate in the living organism how sleep initiates events lasting beyond the period of sleep to drive memory consolidation.


2010 ◽  
Vol 104 (1) ◽  
pp. 559-568 ◽  
Author(s):  
Aviad Hai ◽  
Joseph Shappir ◽  
Micha E. Spira

Here we report on the development of a novel neuroelectronic interface consisting of an array of noninvasive gold-mushroom-shaped microelectrodes (gMμEs) that practically provide intracellular recordings and stimulation of many individual neurons, while the electrodes maintain an extracellular position. The development of this interface allows simultaneous, multisite, long-term recordings of action potentials and subthreshold potentials with matching quality and signal-to-noise ratio of conventional intracellular sharp glass microelectrodes or patch electrodes. We refer to the novel approach as “in-cell recording and stimulation by extracellular electrodes” to differentiate it from the classical intracellular recording and stimulation methods. This novel technique is expected to revolutionize the analysis of neuronal networks in relations to learning, information storage and can be used to develop novel drugs as well as high fidelity neural prosthetics and brain-machine systems.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Albert Liu ◽  
Neeraj Jain ◽  
Ajai Vyas ◽  
Lee Wei Lim

Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders.


2017 ◽  
Vol 65 (3) ◽  

A lot has been published on the topic concussion in sports during the last years, conscience was sharpened, much was structured and defined more precisely, help tools were developed and rules changed. This article summarizes the fifth edition of the recently published guidelines of the “International Consensus Conference on Concussion in Sport”. In addition, new findings regarding gender differences and recovery will be presented, as well as the modified “return-to-sport” and the novel “return-to-school” protocols. Despite increased knowledge many questions remain such as the therapy of persistent symptoms or long-term sequelae of recurrent concussions.


Author(s):  
O. Semenenko ◽  
O. Vodchyts ◽  
V. Koverga ◽  
R. Lukash ◽  
O. Lutsenko

The introduction and active use of information transmission and storage systems in the Ministry of Defense (MoD) of Ukraine form the need to develop ways of guaranteed removal of data from media after their use or long-term storage. Such a task is an essential component of the functioning of any information security system. The article analyzes the problems of guaranteed destruction of information on magnetic media. An overview of approaches to the guaranteed destruction of information on magnetic media of different types is presented, and partial estimates of the effectiveness of their application are given by some generally accepted indicators of performance evaluation. The article also describes the classification of methods of destruction of information depending on the influence on its medium. The results of the analysis revealed the main problems of application of software methods and methods of demagnetization of the information carrier. The issue of guaranteed destruction of information from modern SSD devices, which are actively used in the formation of new systems of information accumulation and processing, became particularly relevant in the article. In today's conditions of development of the Armed Forces of Ukraine, methods of mechanical and thermal destruction are more commonly used today. In the medium term, the vector of the use of information elimination methods will change towards the methods of physical impact by the pulsed magnetic field and the software methods that allow to store the information storage device, but this today requires specialists to develop new ways of protecting information in order to avoid its leakage.


Sign in / Sign up

Export Citation Format

Share Document