scholarly journals Polypharmacology-based Approach for Screening of Traditional Chinese Medicinal extract and Multi-dimensional Targeting Verification

Author(s):  
Zhiyong Wu ◽  
Chunli Xia ◽  
Ze Wang ◽  
Jiaxin Bao ◽  
Rui Li ◽  
...  

Abstract Background: Natural products and their unique polypharmacology offer significant advantages for finding novel therapeutics particularly for the treatment of complex diseases. Meanwhile, natural products in traditional Chinese medicine possess drug-like properties. In this study, we used the previously established co-infection model of Mycoplasma gallisepticum and Escherichia coli as a representative of complex diseases. The multi-omics joint analysis was used to reverse screen TCMs from the Chinese medicinal database and then targeted verification was conducted from multiple dimensions. Results: The results showed that the Chinese herbal compound screened by the target network played a good therapeutic effect in the case of co-infection. Furthermore, the four methods were performed at gene, protein, and metabolite levels, as well as molecular docking in vitro respectively, which were used to verify the multi-target therapeutic effect. Conclusions: These data suggest that we may provide a new method to validate target combinations of natural products that can be used to optimize their multiple structure-activity relationships to obtain drug-like natural product derivatives. Furthermore, the study could establish a new methodology for the research of Chinese herbal medicinal extract and provide a new multi-target treatment method for the occurrence of co-infection.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hongmei Lu ◽  
Xinyi Luo ◽  
Yuhua He ◽  
Bo Qu ◽  
Liangbin Zhao ◽  
...  

Background. Acute kidney injury (AKI) is a common clinically critical illness with serious consequences for the patients. Shenshuaikang enema (SE) is a Chinese herbal compound that is used to treat AKI in clinical practice. However, its mechanism of action remains unclear. Aim. The aim of this study was to investigate the therapeutic effect of SE and explore the molecular mechanisms using network pharmacology and in vitro experiments. Materials and Methods. The herb-component-target network was constructed based on network pharmacology. The predicted targets and pathways were validated using in vitro experiments. A renal tubular epithelial cell line (HK-2 cells) was exposed to hypoxia and reoxygenation (H/R) using air-tight conditions for five hours and treated with different concentrations of SE (25%, 50%, and 75%) to assess cell viability and apoptosis and determine the optimal experimental dose. Subsequently, H/R-injured HK-2 cells were pretreated with the optimal SE dose and then randomly divided into three groups, the SE, SE-SP600125 (inhibitor of JNK), and SE-NAC (antioxidant) groups. The cell vitality, apoptosis, and death were evaluated using the cell counting kit 8 (CCK8) and carboxyfluorescein succinimidyl ester/propidium iodide (CFSF/PI) staining. The apoptosis-related protein JNK and Caspase-3 were assessed by Western blot. Expression of JNK and Caspase-3 genes was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR). Results. 123 active components and 226 targets were identified from four herbs that composed the herb-compound-target network based on transcriptomics and network pharmacology analyses. The KEGG pathway analyses revealed that the mitochondrial apoptosis pathway was involved in the therapeutic AKI effects of SE. Cell vitality of H/R-induced HK-2 cells was obviously increased when treating them with SE, and the apoptosis was significantly inhibited, especially in the SE (50%) group at 4 and 12 h after modeling. Pretreatment with antioxidant NAC obviously prevented cell death compared to the SE (50%) group, while no obvious reduction of apoptosis was observed in the SP600125 group. JNK expression level was significantly increased in the SE (50%) group compared to the SP600125 ( P < 0.01 ) and the NAC group ( P < 0.05 ). Caspase-3 was downregulated in the SE (50%) group compared to the SP600125 ( P < 0.01 ) and NAC group ( P < 0.05 ). Caspase-3 activation in the SP600125 group was higher than that in the NAC group ( P < 0.05 ). Moreover, the oxidative damage-dependent JNK/Caspase-3 pathway was identified in the H/R-injured HK-2 cells by inhibiting the JNK activation and oxidative damage. Conclusions. Our findings suggested that the H/R-triggered apoptosis in HK-2 cells was abrogated by SE by upregulating the oxidative damage-dependent JNK to trigger suppression of Caspase-3.


2017 ◽  
Vol 10 (4) ◽  
pp. 6-12
Author(s):  
Sergey Yu Astakhov ◽  
Inna A Riks ◽  
Sanasar S Papanyan ◽  
Arkadiy A Kasparov ◽  
Evgeniya A Kasparova ◽  
...  

The article presents treatment results of the personalized cell therapy (PCT) method in patients with early post-operative bullous keratopathy which developed in eyes with pre-existing primary Fuchs’ corneal endothelial dystrophy (ED). The patented PCT consists in incubating in vitro the patient’s blood with the stimulator (polyA:polyU), collecting serum with activated leukocytes weighted in it, and introducing the obtained cell preparation in the anterior chamber of the patient’s eye. The study included 12 patients with ED and pseudophakia. The observation period ranged from 8 to 12 months. The therapeutic effect of PCT was obtained in 58.3% of cases, allowing to avoid further surgical procedures. To achieve a good therapeutic effect, several PCT sessions are recommended. To date, PCT is the only effective therapeutic treatment method for early corneal edema after phacoemulsification. (For citation: Astakhov SYu, Riks IA, Papanyan SS, et al. Experience in personalized cell therapy clinical implementation for treatment of patients with primary endothelial dystrophy after phacoemulsification. Ophthalmology Journal. 2017;10(4):6-12. doi: 10.17816/OV1046-12).


2021 ◽  
Vol 12 ◽  
Author(s):  
Liu-Yan Su ◽  
Guang-Hui Ni ◽  
Yi-Chuan Liao ◽  
Liu-Qing Su ◽  
Jun Li ◽  
...  

The increased resistance of Candida albicans to conventional antifungal drugs poses a huge challenge to the clinical treatment of this infection. In recent years, combination therapy, a potential treatment method to overcome C. albicans resistance, has gained traction. This study assessed the effect of 6,7,4′-O-triacetylscutellarein (TA) combined with fluconazole (FLC) on C. albicans in vitro and in vivo. TA combined with FLC showed good synergistic antifungal activity against drug-resistant C. albicans in vitro, with a partial inhibitory concentration index (FICI) of 0.0188–0.1800. In addition, the time-kill curve confirmed the synergistic effect of TA and FLC. TA combined with FLC showed a strong synergistic inhibitory effect on the biofilm formation of resistant C. albicans. The combined antifungal efficacy of TA and FLC was evaluated in vivo in a mouse systemic fungal infection model. TA combined with FLC prolonged the survival rate of mice infected with drug-resistant C. albicans and reduced tissue invasion. TA combined with FLC also significantly inhibited the yeast-hypha conversion of C. albicans and significantly reduced the expression of RAS-cAMP-PKA signaling pathway-related genes (RAS1 and EFG1) and hyphal-related genes (HWP1 and ECE1). Furthermore, the mycelium growth on TA combined with the FLC group recovered after adding exogenous db-cAMP. Collectively, these results show that TA combined with FLC inhibits the formation of hyphae and biofilms through the RAS-cAMP-PKA signaling pathway, resulting in reduced infectivity and resistance of C. albicans. Therefore, this study provides a basis for the treatment of drug-resistant C. albicans infections.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Velegraki ◽  
K Graikou ◽  
S Kritikou ◽  
M Varsani ◽  
I Chinou

2020 ◽  
Author(s):  
Rafael Baptista ◽  
Sumana Bhowmick ◽  
Shen Jianying ◽  
Luis Mur

Tuberculosis (TB) is a major global threat mostly due to the development of antibiotic resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing need for new anti-mycobacterial agents, several natural products (NPs) have been shown to have in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular docking approach to predict the interactions of 53 selected anti-mycobacterial NPs against known ‘druggable’ mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking scores / binding free energies were predicted and calculated using AutoDock Vina along with physicochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13’-bromotiliacorinine against the targets PknB and DprE1 (-11.4, -10.9 and -9.8 kcal.mol-1 ; -12.7, -10.9 and -10.3 kcal.mol-1 , respectively) and the lignan αcubebin and Pks13 (-11.0 kcal.mol-1 ) had significantly superior docking scores compared to controls. Our approach can be used to suggest predicted targets for the NP to be validated experimentally but these in silico steps are likely to facilitate drug optimisation.


2010 ◽  
Vol 30 (2) ◽  
pp. 212-214
Author(s):  
Hong QIAN ◽  
Nong XIAO ◽  
Zhi-feng QIN ◽  
Yan-jun LIU ◽  
Yi-jun SHEN ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


Sign in / Sign up

Export Citation Format

Share Document