scholarly journals Pilot study on the treatment of low carbon and nitrogen ratio municipal sewage by AOAAO sludge-membrane coupling process with multi-point inflow

Author(s):  
Dewei Zhang ◽  
Jun-Tian Zheng ◽  
Jun Zheng ◽  
Meng-Ke Zhao ◽  
Meng-Lin Wang ◽  
...  

Abstract A new multi-point inflowA1/O2/A3/A4/O5 sludge-membrane coupling process and pilot plant were developed and designed to solve the problem of nitrogen and phosphorus removal of low C/N domestic sewage in southern China. By changing the distribution ratio of multi-point influent, the removal effect and transformation rule of organic matter, nitrogen and phosphorus in the system were studied. Results showed that when the average low C/N ratio of influent was 2.09 and the influent distribution ratio was 1:1, the average concentrations of COD, NH4+- N, TN and TP in the effluent were 21.31 mg/L, 0.60 mg/L, 12.76 mg/L and 0.34 mg/L, respectively, and the average removal rates are 87.3%, 98.7%, 74.1% and 88.1% respectively. When the low temperature was 12–15℃, the average removal rates were 87.3%, 98.7%, 74.1% and 88.1%, respectively. Compared with the traditional A2O process under the same conditions, the TN removal rate was increased by 15.4%, and the TP removal rate was increased by 22.2%. This system has obvious advantages in treating wastewater with low carbon and nitrogen ratio, which solved the problem that the effluent of biological phosphorus removal from low C/N ratio domestic sewage was difficult to be lower than 0.5 mg/L.

2013 ◽  
Vol 777 ◽  
pp. 303-308 ◽  
Author(s):  
Li Cheng Zhang ◽  
Qiang Liu ◽  
Yu Lan ◽  
Yang Yu

The influence of MLSS on nitrosation denitrifying phosphorus removal (NDPR) process was investigated through the experiments of anaerobic-anoxic NDPR and anoxic NDPR. Experimental results show that the higher MLSS is, the bigger COD removal rate is, and the higher the rates of anaerobic phosphorus release and anoxic phosphorus absorption are. Low carbon sewage will easily lead to insufficient inner carbon source in the system with high MLSS. High concentration of carbon source in the raw water with high MLSS will bring considerable difficulties to returned sludge and sludge treatment. Moreover, excessive MLSS will result in phosphorus release in the later anoxic stage, and lower MLSS can prolong the time of denitrification and phosphorus removal. The system with 5200 mg/L MLSS has the best effect of nitrogen and phosphorus removal.


2013 ◽  
Vol 295-298 ◽  
pp. 1057-1061 ◽  
Author(s):  
Chang Bing Ye ◽  
Zhi Ming Zhou ◽  
Ke Zhao ◽  
Qin Liu

To solve the problem of short-circuit of individual current constructed wetland, a baffled constructed wetland was designed and applied to treat domestic sewage by our research group. The wetland plants were composed of Eichhormia crassipes, Oenanthe javanica, Cyperusalternifolius, Phragmites communis and Aquatic. The results of 18 month indicated that the optimal hydraulic load of baffled constructed wetland was 2.0~2.2 m3/(m2•d). At the hydraulic load of 2.0m3/(m2•d), the COD, TN and TP removal rates of baffled constructed wetland could be over 76.40%, 76.12%, 65.37%, respectively, at 24°C. When the temperature decreased to 12°C, the COD, TN, TP removal rates of system decreased to 67.56%、62.75% and 61.33%, respectively; The SS removal rate of the first 6 compartments was about 79.5% and that of system could maintain 87.18% during the operation of system. Based on the results of trial, the mechanisms of extending the baffled constructed wetland's operational life was owed to high efficient SS removal rate of the first 6 compartments which was used as constructed wetland and anaerobic baffled reactor (ABR). As a result, the long-term stable operation of system in treatment of domestic sewage was explained with extending about 5 times service life than that of individual current constructed wetland. The mechanisms of higher efficiency of baffled constructed wetland in treatment of domestic sewage were owed to the longer flow line of system and the up-down flow of domestic sewage makes pollutant more intimate contact with roots of wetland plants.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


2020 ◽  
Vol 81 (9) ◽  
pp. 2023-2032
Author(s):  
Jingqing Gao ◽  
Lei Yang ◽  
Rui Zhong ◽  
Yong Chen ◽  
Jingshen Zhang ◽  
...  

Abstract The environmental problems related to rural domestic sewage treatment are becoming increasingly serious, and society is also concerned about them. A baffled vertical flow constructed wetland (BVFCW) is a good choice for cleaning wastewater. Herein, a drinking-water treatment sludge-BVFCW (D-BVFCW) parallel with ceramsite-BVFCW (C-BVFCW) planted with Oenanthe javanica (O. javanica) to treat rural domestic sewage was investigated, aiming to compare nitrogen and phosphorus removal efficiency in different BVFCWs. A removal of 23.9% NH4+-N, 24.6% total nitrogen (TN) and 76.7% total phosphorus (TP) occurred simultaneously in the D-BVFCW; 56.4% NH4+-N, 60.8% TN and 55.2% TP respectively in the C-BVFCW. The root and plant height increased by an average of 7.9 cm and 8.3 cm, respectively, in the D-BVFCW, and by 0.7 cm and 1.1 cm, respectively, in the C-BVFCW. These results demonstrate that the D-BVFCW and C-BVFCW have different effects on the removal of N and P. The D-BVFCW mainly removed P, while C-BVFCW mainly removed N.


2012 ◽  
Vol 588-589 ◽  
pp. 55-58
Author(s):  
Yong Feng Li ◽  
Jian Yu Yang ◽  
Guo Cai Zhang

Simulate sewage were used in an anaerobic-anoxic-aerobic biological nutrient removal system(A2O process), by observing the pHs in different compartments and its reflected changes in nitrogen and phosphorus removal, studied on the effects of different pHs on the removal of pollutants. The experiments indicates that the anaerobic phosphorus release showed the main performance of the decline of pH, denitrification in anoxic zone caused the rise of pH, uptake of phosphate in the aerobic zone mainly caused the continuous rise of pH. There is no evidently changes in COD removal, ammonia nitrogen get the highest removal as the pH value was between 8.0-8.5, when pH was at 6.5-7.5, the TN have the maximum removal rate, TP can keep in a high level when the pH was above 6.0.


Sign in / Sign up

Export Citation Format

Share Document