scholarly journals A Symbiotic Organisms Search Algorithm With Memory Guidance for Global Optimization Problems

Author(s):  
Pengjun ZHao ◽  
Sanyang Liu

Abstract Symbiotic organisms search (SOS) algorithm is a nature-inspired meta-heuristic algorithm, which has been successfully applied to solve a large number of problems of different areas. In this work, a novel modified variant of SOS with a memory strategy and good-point set (GMSOS) is proposed to improve the properties of exploration and exploitation. For improving the population diversity and the search capability of the SOS algorithm, the good point set theory rather than random selection is used to generate the initial population, and the memory strategy is adopted in three phases of the SOS algorithm, which aims at maintaining the trade-off between exploration and exploitation effectively, and preventing the current best solution from getting trapped into local optima. The performance of the proposed version of SOS is tested on standard benchmark functions with different characteristics and real-world problems. The numerical and statistical results on these applications demonstrate the competitive ability of the proposed algorithm as compared to other popular algorithms available in the literature.

Author(s):  
Aijia Ouyang ◽  
Kenli Li ◽  
Xiongwei Fei ◽  
Xu Zhou ◽  
Mingxing Duan

This paper presents a multi-objective co-evolutionary population migration algorithm based on Good Point Set (GPSMCPMA) for multi-objective optimization problems (MOP) in view of the characteristics of MOPs. The algorithm introduces the theory of good point set (GPS) and dynamic mutation operator (DMO) and adopts the entire population co-evolutionary migration, based on the concept of Pareto nondomination and global best experience and guidance. The performance of the algorithm is tested through standard multi-objective functions. The experimental results show that the proposed algorithm performs much better in the convergence, diversity and solution distribution than SPEA2, NSGA-II, MOPSO and MOMASEA. It is a fast and robust multi-objective evolutionary algorithm (MOEA) and is applicable to other MOPs.


2011 ◽  
Vol 31 (5) ◽  
pp. 1359-1362
Author(s):  
Yan-ping ZHANG ◽  
Juan ZHANG ◽  
Cheng-gang HE ◽  
Wei-cui CHU ◽  
Li-na ZHANG

2021 ◽  
pp. 136943322110262
Author(s):  
Mohammad H Makiabadi ◽  
Mahmoud R Maheri

An enhanced symbiotic organisms search (ESOS) algorithm is developed and presented. Modifications to the basic symbiotic organisms search algorithm are carried out in all three phases of the algorithm with the aim of balancing the exploitation and exploration capabilities of the algorithm. To verify validity and capability of the ESOS algorithm in solving general optimization problems, the CEC2014 set of 22 benchmark functions is first optimized and the results are compared with other metaheuristic algorithms. The ESOS algorithm is then used to optimize the sizing and shape of five benchmark trusses with multiple frequency constraints. The best (minimum) mass, mean mass, standard deviation of the mass, total number of function evaluations, and the values of frequency constraints are then compared with those of a number of other metaheuristic solutions available in the literature. It is shown that the proposed ESOS algorithm is generally more efficient in optimizing the shape and sizing of trusses with dynamic frequency constraints compared to other reported metaheuristic algorithms, including the basic symbiotic organisms search and its other recently proposed improved variants such as the improved symbiotic organisms search algorithm (ISOS) and modified symbiotic organisms search algorithm (MSOS).


2018 ◽  
Vol 173 ◽  
pp. 03004
Author(s):  
Gui-fang Shen ◽  
Yi-Wen Zhang

To improve the accuracy of the financial early warning of the company, aiming at defects of slow learning speed, trapped in local solution and inaccurate operating result of the traditional BP neural network with random initial weights and thresholds, a parallel ensemble learning algorithm based on improved harmony search algorithm using good point set (GIHS) optimize the BP_Adaboost is proposed. Firstly, the good-point set is used to construct a more high quality initial harmony library, and it adjusts the parameters dynamically during the search process and generates several solutions in each iteration so as to make full use of information of harmony memory to improve the global search ability and convergence speed of algorithm. Secondly, ten financial indicators are chosen as the inputs of BP neural network value, and GIHS algorithm and BP neural network are combined to construct the parallel ensemble learning algorithm to optimize BP neural network initial weights value and output threshold value. Finally, many of these weak classifier is composed as strong classifier through the AdaBoost algorithm. The improved algorithm is validated in the company's financial early warning. Simulation results show that the performance of GIHS algorithm is better than the basic HS and IHS algorithm, and the GIHS-BP_AdaBoost classifier has higher classification and prediction accuracy.


2019 ◽  
Vol 77 ◽  
pp. 567-583 ◽  
Author(s):  
Khoa H. Truong ◽  
Perumal Nallagownden ◽  
Zuhairi Baharudin ◽  
Dieu N. Vo

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1637
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Ali Fatahi ◽  
Hoda Zamani ◽  
Seyedali Mirjalili ◽  
Laith Abualigah

Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO’s issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.


2018 ◽  
Vol 20 (2) ◽  
pp. 102 ◽  
Author(s):  
Doddy Prayogo ◽  
Jessica Chandra Sutanto ◽  
Hieronimus Enrico Suryo ◽  
Samuel Eric

A good arrangement of site layout on a construction project is a fundamental component of the project’s efficiency. Optimization on site layout is necessary in order to reduce the transportation cost of resources or personnel between facilities. Recently, the use of bio-inspired algorithms has received considerable critical attention in solving the engineering optimization problem. These methods have consistently provided better performance than traditional mathematical-based methods to a variety of engineering problems. This study compares the performance of particle swarm optimization (PSO), artificial bee colony (ABC), and symbiotic organisms search (SOS) algorithms in optimizing site layout planning problems. Three real-world case studies of layout optimization problems have been used in this study. The results show that SOS has a better performance in comparison to the other algorithms. Thus, this study provides useful insights to construction practitioners in the industry who are involved in dealing with optimization problems


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chang-Jian Sun ◽  
Fang Gao

The marine predators algorithm (MPA) is a novel population-based optimization method that has been widely used in real-world optimization applications. However, MPA can easily fall into a local optimum because of the lack of population diversity in the late stage of optimization. To overcome this shortcoming, this paper proposes an MPA variant with a hybrid estimation distribution algorithm (EDA) and a Gaussian random walk strategy, namely, HEGMPA. The initial population is constructed using cubic mapping to enhance the diversity of individuals in the population. Then, EDA is adapted into MPA to modify the evolutionary direction using the population distribution information, thus improving the convergence performance of the algorithm. In addition, a Gaussian random walk strategy with medium solution is used to help the algorithm get rid of stagnation. The proposed algorithm is verified by simulation using the CEC2014 test suite. Simulation results show that the performance of HEGMPA is more competitive than other comparative algorithms, with significant improvements in terms of convergence accuracy and convergence speed.


Sign in / Sign up

Export Citation Format

Share Document