scholarly journals BrrICE1.1 is associated with putrescine synthesis through regulation of the arginine decarboxylase gene in freezing tolerance of turnip (Brassica rapa var. rapa)

2020 ◽  
Author(s):  
Xin Yin(Former Corresponding Author) ◽  
Yunqiang Yang ◽  
Yanqiu Lv ◽  
Yan Li ◽  
Danni Yang ◽  
...  

Abstract Background: In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance is unclear. Results: Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that the transcription factor BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. Conclusions: BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increase our understanding of the plateau crops response to extreme environments in Tibet.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Yin ◽  
Yunqiang Yang ◽  
Yanqiu Lv ◽  
Yan Li ◽  
Danni Yang ◽  
...  

Abstract Background In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance are unclear. Results Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. Conclusions BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increased our understanding of the plateau crops response to extreme environments in Tibet.


2020 ◽  
Author(s):  
Xin Yin ◽  
Yunqiang Yang ◽  
Yanqiu Lv ◽  
Yan Li ◽  
Danni Yang ◽  
...  

Abstract Background: In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance are unclear. Results: Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. Conclusions: BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increased our understanding of the plateau crops response to extreme environments in Tibet.


2020 ◽  
Author(s):  
Xin Yin ◽  
Yunqiang Yang ◽  
Yanqiu Lv ◽  
Yan Li ◽  
Danni Yang ◽  
...  

Abstract Background: In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance are unclear. Results: Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. Conclusions: BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increase our understanding of the plateau crops response to extreme environments in Tibet.


2020 ◽  
Author(s):  
Xin Yin ◽  
Yunqiang Yang ◽  
Yanqiu Lv ◽  
Yan Li ◽  
Danni Yang ◽  
...  

Abstract Background: In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance are unclear. Results: Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. Conclusions: BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increase our understanding of the plateau crops response to extreme environments in Tibet.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangliu Yin ◽  
Youling Zeng ◽  
Jieyun Ji ◽  
Pengju Wang ◽  
Yufang Zhang ◽  
...  

The APETALA2 (AP2) and ethylene-responsive element-binding factor (ERF) gene family is one of the largest plant-specific transcription factor gene families, which plays a critical role in plant development and evolution, as well as response to various stresses. The TARGET OF EAT3 (TOE3) gene is derived from Halostachys caspica and belongs to the AP2 subfamily with two AP2 DNA-binding domains. Currently, AP2 family mainly plays crucial roles in plant growth and evolution, yet there are few reports about the role of AP2 in abiotic stress tolerance. Here, we report HcTOE3, a new cold-regulated transcription factor gene, which has an important contribution to freezing tolerance. The main results showed that the expression of HcTOE3 in the H. caspica assimilating branches was strongly induced by different abiotic stresses, including high salinity, drought, and extreme temperature (heat, chilling, and freezing), as well as abscisic acid and methyl viologen treatments. Overexpressing HcTOE3 gene (OE) induced transgenic Arabidopsis plant tolerance to freezing stress. Under freezing treatment, the OE lines showed lower content of malondialdehyde and electrolyte leakage and less accumulation of reactive oxygen species compared with the wild type. However, the survival rates, antioxidant enzyme activities, and contents of osmotic adjustment substance proline were enhanced in transgenic plants. Additionally, the OE lines increased freezing tolerance by up-regulating the transcription level of cold responsive genes (CBF1, CBF2, COR15, COR47, KIN1, and RD29A) and abscisic acid signal transduction pathway genes (ABI1, ABI2, ABI5, and RAB18). Our results suggested that HcTOE3 positively regulated freezing stress and has a great potential as a candidate gene to improve plant freezing tolerance.


2018 ◽  
Vol 19 (12) ◽  
pp. 4077 ◽  
Author(s):  
Xiucun Zeng ◽  
Yaozhao Xu ◽  
Jinjin Jiang ◽  
Fenqin Zhang ◽  
Li Ma ◽  
...  

The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (−4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of “Longyou7” (freezing-tolerant) and “Tianyou4” (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in “Longyou7”, respectively, and 46 and 50 proteins were up- and down-accumulated in “Tianyou4”, respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.


2013 ◽  
Vol 361-363 ◽  
pp. 898-902
Author(s):  
Jing Xin Li ◽  
Shi Gong Wang ◽  
Ke Zheng Shang ◽  
Yan Li ◽  
Tian Yi Hao ◽  
...  

Extreme temperature events in China have been simulated by using the Beijing Climate Center Climate System Model (BCC_CSM1.0). Daily observed temperature data for 1961-2006 at stations in China are used for comparison. The result shows that the value of simulation is consistent with the observation. But the consequence has a lower value especially Qinghai-Tibet Plateau; there is a good simulation for BCC_CSM1.0 for temperature and extreme indices over China in a certain range of error. Trends of indices of extreme temperature are increased.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangliang Hou ◽  
Jingyi Gao ◽  
Youcheng Chen ◽  
Changjun Xu ◽  
Zhuoma Lancuo ◽  
...  

Abstract The Qinghai-Tibet Plateau (QTP) has become a valuable site for investigation of adaptive regimes of prehistoric humans to extreme environments. At present most studies have focused solely on a single site. Using a more integrated approach that covers the complete scope of the plateau is needed to better understand the expansion logic of prehistoric humans moving towards the plateau. Here, we conducted accelerator mass spectrometry 14C dating of two microlithic sites. Canxiongashuo (CXGS) and Shalongka (SLK), which are located at the inner and marginal areas of the QTP, respectively. By using geographic information system, literature, and natural environmental factors, we constructed a model for the relationship between traveling distance and time, and we also used these factors to construct a plateau environmental index. The results indicated that the ages of the CXGS and SLK sites are 8.4–7.5 cal. ka BP and 8.4–6.2 cal. ka BP, respectively. Combining the archaeological evidence and literature, hunter-gatherers may have seasonal migration activities at low altitude in winter and high altitude in summer in order to make full use of natural resources. Our model of relationship between traveling distance and time shows that hunter-gatherers in CXGS site was active on the plateau all year-round at approximately 8.3 cal. ka BP. According to EI and archaeological remains, we propose that SLK site was a winter camp of prehistoric hunter-gatherers. Taken together, we determined 8.4–6.0 cal. ka BP as a transitional period from the Paleolithic to Neolithic Ages, and winter camps of hunter-gatherers evolved into settlements in the Neolithic Age.


Sign in / Sign up

Export Citation Format

Share Document