scholarly journals Column Experiments on Arsenic Removal Through Adsorption From Water Using Different Natural and Synthetic Adsorbents

Author(s):  
Shahnoor Alam Khan ◽  
Monzur Alam Imteaz

Abstract With the aim of exploring a best adsorbent from locally available sands for removing arsenic from water, eight different adsorbents are tested through column experiments using those materials as filter bed. Based on earlier batch experimental results five locally available sands (Scoria, Skye, Iron ore, NT red and TGS), one commercial sand (GFH) and two synthetic sands (IOCS and IOCS-AOCS) were selected for the column experiments. Target was to treat arsenic from water up to WHO standard level of 10 µg/L for a considerable period. It is found that Skye sand is capable to treat arsenic-contaminated water to the WHO standard for the longest period, followed by TGS, Iron ore and NT red sands. Scoria sand is unable to treat water up to the WHO standard. Although, GFH, IOCS and IOCS-AOCS are capable to remove arsenic to an excellent level, however practically not suitable as they get clogged due to accumulation of finer particles in the filter bed. Also, it is found that artificial coatings enhance the arsenic removal capabilities, however susceptible to clogging.

2014 ◽  
Vol 237 ◽  
pp. 47-54 ◽  
Author(s):  
Márcia C.S. Faria ◽  
Renedy S. Rosemberg ◽  
Cleide A. Bomfeti ◽  
Douglas S. Monteiro ◽  
Fernando Barbosa ◽  
...  

2018 ◽  
Vol 12 (5) ◽  
pp. 234-246 ◽  
Author(s):  
Susmita Lahiri ◽  
Ankita Bhattachar ◽  
Bana Behari Jan ◽  
Sushil Kumar Mand ◽  
Jatindranath Bhakta ◽  
...  

2017 ◽  
Vol 18 (2) ◽  
pp. 460-472 ◽  
Author(s):  
E. Shokri ◽  
R. Yegani ◽  
B. Pourabbas ◽  
B. Ghofrani

Abstract In this work, montmorillonite (Mt) was modified by environmentally friendly arginine (Arg) and lysine (Lys) amino acids with di-cationic groups for arsenic removal from contaminated water. The modified Mts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, zeta potential and thermal analysis. The adsorption of As(V) onto modified Mts as a function of initial As(V) concentration, contact time and solution pH was investigated. The removal efficiency was increased with increasing the As(V) concentration and contact time; however, it was decreased with increasing solution pH. The maximum As(V) adsorption capacities of Mt-Arg and Mt-Lys were 11.5 and 11 mg/g, respectively, which were five times larger than pristine Mt. The high adsorption capacity makes them promising candidates for arsenic removal from contaminated water. The regeneration studies were carried out up to 10 cycles for both modified Mts. The obtained results confirmed that the modified adsorbents could also be effectively used for As(V) removal from water for multiple adsorption – desorption cycles.


2013 ◽  
Vol 726-731 ◽  
pp. 1659-1663
Author(s):  
Ning Xin Chen ◽  
Yong Bing Huang ◽  
Jing Dong

Using manganese ore coated with small stones to adsorb arsenic from the contaminated water samples of Yangzonghai Lake, and several factors that may have impacts on the arsenic removal efficiency are analyzed. The result shows that the new adsorbent material has a great effect on arsenic removal. Temperature's effect on arsenic removal efficiency is not obvious. The arsenic removal efficiency increased dramatically in accordance with residence time within 0-660s, and then stabilized. The adsorption process is better when conducted in acidic conditions, the maximum adsorption rate reached 83.0% with the pH of 3.0 and it reached the minimum value of 14.7% when pH is 10. Fe3+ and Ca2+ can slightly promote manganese ore's adsorption of arsenic, and with anions CO32-, SiO32- , efficiency was slightly reduced. When fitting the kinetics data of arsenic removal by coated manganese ore, the adsorption process is correspondent with first-order reaction kinetics model. The adsorption isotherm is more close to the Freundlich isotherm model.


2018 ◽  
Vol 13 (2) ◽  
pp. 285-294
Author(s):  
Borano Te ◽  
Boonchai Wichitsathian ◽  
Chatpet Yossapol ◽  
Watcharapol Wonglertarak

Abstract Many people in Cambodia consume groundwater with arsenic concentrations above the WHO guideline. In this study, an iron-mixed porous pellet adsorbent was put into a lightweight bio-sand filter to treat arsenic. The filter was intermittently charged daily with 30 L influent water until the effluent arsenic concentration exceeded 10 μg/L. The results indicated that the Morrill Dispersion Index was less than 2.0, implying that the filter had preferential plug flow. Head loss accumulation led to flow rate reduction over a period of 30 days. Arsenic removal efficiency was between 97 and 99% for the influent concentration, being in the range 355 to 587 μg/L. No significant leaching of iron or organic carbon was observed. The high dissolved oxygen concentration is likely to have contributed to the aerobic conditions in the filter bed. The filter removed arsenic more efficiently than was achieved in some previous studies and might be suitable to provide household-scale, arsenic-safe drinking water.


2017 ◽  
Vol 17 (5) ◽  
pp. 1249-1259 ◽  
Author(s):  
Nao Kamei-Ishikawa ◽  
Nami Segawa ◽  
Daisuke Yamazaki ◽  
Ayumi Ito ◽  
Teruyuki Umita

The down-flow hanging sponge (DHS) reactor was used for continuous As removal treatment of As-contaminated water. The treatment scheme was: (1) As(III) in contaminated water is oxidized by arsenite-oxidizing bacteria fixed in the sponges in the reactor; (2) Fe(II) naturally existing in the water is oxidized by dissolved oxygen; (3) Fe(III) is precipitated as iron hydroxide and As(V) is co-precipitated with the iron hydroxide; and finally (4) the co-precipitates are fixed in the sponges. This system could remove As from As-contaminated water on a small scale and at low cost. The results showed that, after using the DHS reactor, As and Fe concentrations in the treated water were lower than water quality standards for drinking water when Fe(II) concentration in the influent was lower than 10 mg/L and the Fe/As ratio was higher than 6.67–8.42, with dependence on the Fe concentration. Additionally, even if Fe concentration is higher than 10 mg/L, the treatment system is still applicable if the pH of the influent is higher than 7 or the retention time is longer than 2 h.


RSC Advances ◽  
2014 ◽  
Vol 4 (42) ◽  
pp. 21777-21781 ◽  
Author(s):  
Kihun Cho ◽  
Bom Yi Shin ◽  
Hyung Keun Park ◽  
Bong Guen Cha ◽  
Jaeyun Kim

Alginate microbeads encapsulating the uniform akaganeite nanorods were used for quick, easy arsenic removal from highly contaminated water.


2012 ◽  
Vol 66 (1) ◽  
pp. 173-178 ◽  
Author(s):  
D. H. Moed ◽  
D. van Halem ◽  
J. Q. J. C. Verberk ◽  
G. L. Amy ◽  
J. C. van Dijk

Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L−1 phosphate, 0.2 mmol L−1 silicate, and 1 mmol L−1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L−1 calcium and 0.06 mmol L−1 manganese.


Sign in / Sign up

Export Citation Format

Share Document