scholarly journals Investigation of Optical Properties for N and F Doped Triangular Shaped Carbon Molecules 

Author(s):  
Shuhong Xu ◽  
Linfeng Tan ◽  
Fan Liu ◽  
Yiping Cui ◽  
Chunlei Wang ◽  
...  

Abstract Optical properties of N and F doping triangular shaped carbon molecules have been investigated in theory and experiment. The theoretical results showed that carbon molecules with impurity F and Cl have the same characters with pure carbon. Doping N into pure carbon molecule would change the optical rotation at 589nm. For doping N replacing hydrogen atom structures (N-doping 1 and N-doping 2 molecules), the absorption spectra of them are similar to pure carbon molecule. However, for molecules with impurity N atom in benzene ring (N-doping 3 and N-doping 4 molecules), the peaks of wavelength of absorption spectra shift to long wavelength compared to that of pure carbon molecule. Moreover, the delocalization of molecular orbital (MO) is different from pure carbon molecule, which is caused by the impurity N changing the electrons distribution of benzene ring. We have calculated 3 without H and 4 without H molecules which are removing hydrogen atom in nitrogen atom from N-doping 3 and 4. 3 without H and 4 without H molecules have similar optical properties with pure carbon molecule. The results testified that the impurity N and F would not change the optical properties of carbon molecule if impurity did not change the delocalization of all benzene rings.

RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15199-15205
Author(s):  
Lei Shen ◽  
Zhongguo Li ◽  
Xingzhi Wu ◽  
Wenfa Zhou ◽  
Junyi Yang ◽  
...  

The introduction of a benzene ring largely affects the excited-state absorption spectra and dynamics of these chromophores.


2014 ◽  
Vol 979 ◽  
pp. 343-346 ◽  
Author(s):  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao

Borophosphate glasses have been synthesized with a Bi2O3concentration of 15.0 to 25.0 mol%, added 2.5 mol% for each concentration, by the normal melt quenching technique at 1200 °C. The physical and optical properties of bismuth borophosphate glass systems have been studied. The glasses are characterized for their physical and optical properties. The density and molar volume of these glasses were found in the range 3.4391 to 3.9338 g/cm3and 52.2515 to 55.7557 cm3/mol, respectively. It was observed that the density and molar volume of these glasses was increased with increasing the concentration of Bi2O3. The absorption spectra of these glasses were recorded in the UV-Visible range. It has been found that, the absorption spectra were shifted to longer wavelength with higher Bi2O3concentration. In addition, the oxygen packing density of glass samples have been also investigated.


2021 ◽  
Vol 16 (6) ◽  
pp. 967-973
Author(s):  
Shuai Zhao ◽  
Dong-Xue Lin ◽  
Yu-Xin Wang

All of the TiO2 films including intrinsic TiO2 film, Zn single doped film with 2.0 at% content and N doped films with 4.0 at%, 6.0 at%, 8.0 at% and 10.0 at% content, were obtained by butyl titanate (Ti(OC4H9)4) as a titanium source, zinc nitrate (Zn(NO3)2·6H2O) as zinc source and urea (H2 NCONH2) as nitrogen source, which was calcined at 600 °C on the glass substrate and Si substrate using sol–gel spin coating method. The structures, morphology and optical properties of various films were analyzed and studied by X ray diffract meter (XRD), ultraviolet-visible spectrophotometer (UV-Vis) and scanning electron microscope (SEM). The results indicated that the main crystal plane of TiO2 film was (101) and any impurity crystal plane didn't appear. All samples had obvious red shifts in the absorbing edge overall and reduced significantly the width of forbidden band, especially, the N doping content with 8.0 at% was surprised to investigate the strongest (101) peak intensity, the sharpest peak type, the best meritocratic orientation, the greatest red shift of the absorption spectrum, the lowest optical band gap value of 3.356 eV, and the highest utilization rate of visible light of the sample. However, the surface morphology of the others films except the N doping content with 8.0 at% is not further improved by co-doping, that is, their surfaces were still rough, had obvious voids and uneven distribution between the grains. Meanwhile, the intensity of the (101) crystalline diffraction peaks of these samples were reduced and the crystalline spacing generally increased after co-doping.


2012 ◽  
Vol 21 (6) ◽  
pp. 067102 ◽  
Author(s):  
Li-Ying Zhang ◽  
Jin-Liang Yan ◽  
Yi-Jun Zhang ◽  
Ting Li

Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Johannes Buchen ◽  
Volker Wesemann ◽  
Steffen Dehmelt ◽  
Andreas Gross ◽  
Daniel Rytz

Many borate crystals feature nonlinear optical properties that allow for efficient frequency conversion of common lasers down into the ultraviolet spectrum. Twinning may degrade crystal quality and affect nonlinear optical properties, in particular if crystals are composed of twin domains with opposing polarities. Here, we use measurements of optical activity to demonstrate the existence of inversion twins within single crystals of YAl 3 (BO 3 ) 4 (YAB) and K 2 Al 2 B 2 O 7 (KABO). We determine the optical rotatory dispersion of YAB and KABO throughout the visible spectrum using a spectrophotometer with rotatable polarizers. Space-resolved measurements of the optical rotation can be related to the twin structure and give estimates on the extent of twinning. The reported dispersion relations for the rotatory power of YAB and KABO may be used to assess crystal quality and to select twin-free specimens.


MRS Advances ◽  
2019 ◽  
Vol 4 (53) ◽  
pp. 2907-2912
Author(s):  
R. Hinojosa-Domínguez ◽  
J. S. Pérez-Huerta ◽  
D. Ariza-Flores ◽  
I. A. Sustaita-Torres ◽  
J. Madrigal-Melchor

ABSTRACTIt is well known the remarkable optical properties of both graphene and left handed materials, for which we study the optical properties of a multilayer system building by graphene-dielectric-left hand material. In this work, we show the transmission, reflection and absorption spectra for a different set of parameters of the left-handed material structure. It is important to highlight that the inclusion of graphene remarkably modifies the transmission and absorption spectra. The optical properties of the graphene-LHM can be modulated via the different parameters of system. We showed that the fill function do not change the line form of the spectra, however, modify their amplitudes. With respect to light polarization, it’s possible to observe that the spectra are widen for TM respect to TE polarization.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 815
Author(s):  
Wei Cheng ◽  
Chen Cheng ◽  
Baolin Ke

Pyrite is a mineral often associated with coal in coal seams and is a major source of sulfur in coal. Coal–pyrite is widely distributed, easily available, low-cost, and non-toxic, and has high light absorption coefficient. So, it shows potential for various applications. In this paper, the density-functional theory (DFT + U) is used to construct coal–pyrite with carbon doped in the sulfur and iron vacancies of pyrite. The effects of different carbon defects, different carbon doping concentrations, and different doping distributions in the same concentration on the electronic structure and optical properties of coal–pyrite were studied. The results show that the absorption coefficient and reflectivity of coal–pyrite, when its carbon atom substitutes the iron and sulfur atoms in the sulfur and iron vacancies, are significantly higher than those of the perfect pyrite, indicating that coal–pyrite has potential for application in the field of photovoltaic materials. When carbon is doped in the sulfur vacancy, this impurity state reduces the width of the forbidden band; with the increase in the doping concentration, the width of the forbidden band decreases and the visible-light absorption coefficient increases. The distribution of carbon impurities impacts the band gap but has almost no effect on the light absorption coefficient, complex dielectric function, and reflectivity, indicating that the application of coal–pyrite to photovoltaic materials should mainly consider the carbon doping concentration instead of the distribution of carbon impurities. The research results provide a theoretical reference for the application of coal–pyrite in the field of photoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document