scholarly journals Protocols for Isolating and Characterizing Polysaccharides From 1 Plant Cell Walls: A Case Study Using Rhamnogalacturonan-II

Author(s):  
Breeanna Urbanowicz ◽  
William Barnes ◽  
Sabina Koj ◽  
Ian Black ◽  
Stephanie Archer-Hartmann ◽  
...  

Abstract Background: In plants, there is a large diversity of polysaccharides that comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin modification and valorization has attracted much attention due to its expanding roles of pectin in biomass deconstruction, food science, material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of pectin structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature’s most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model.Results: We outline how to isolate RG-II from celery and duckweed cell wall material and red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we demonstrate the use of mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG II molecule and RG-II-derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. As RG-II is further modified by non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters, we then describe ways to use electrospray-MS to identify these moieties on RG-II-derived oligosaccharides. We then explored the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) in identifying RG-II-specific sugars and non-glycosyl modifications to complement and extend MS-based approaches. Finally, we describe how to assess the factors that affect RG-35 II dimerization using liquid chromatographic and NMR spectroscopic approaches.Conclusions: The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
William J. Barnes ◽  
Sabina Koj ◽  
Ian M. Black ◽  
Stephanie A. Archer-Hartmann ◽  
Parastoo Azadi ◽  
...  

Abstract Background In plants, a large diversity of polysaccharides comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin valorization has attracted much attention due to its expanding roles in biomass deconstruction, food and material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of its structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature’s most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model. Results We outline how to isolate RG-II from celery and duckweed cell walls and from red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we applied mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG-II and derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. We used electrospray-MS techniques to identify non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters on RG-II-derived oligosaccharides. We then showed the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) to investigate the structure of intact RG-II and to complement the RG-II dimerization studies performed using size-exclusion chromatography. Conclusions The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.


1988 ◽  
Vol 182 (2) ◽  
pp. 207-226 ◽  
Author(s):  
Thomas T. Stevenson ◽  
Alan G. Darvill ◽  
Peter Albersheim

1999 ◽  
Vol 274 (19) ◽  
pp. 13098-13104 ◽  
Author(s):  
Tadashi Ishii ◽  
Toshiro Matsunaga ◽  
Patrice Pellerin ◽  
Malcolm A. O’Neill ◽  
Alan Darvill ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


Sign in / Sign up

Export Citation Format

Share Document