scholarly journals Design of Improved Integral Sliding Mode Observer for Surface-Mounted Permanent Magnet Synchronous Motor

Author(s):  
Wei Liu ◽  
Li Zhang ◽  
Guoying Ning ◽  
Yi Cheng ◽  
Guowei Xu

Abstract An improved integral sliding mode observer (SMO) is proposed for the double closed-loop control system of Surface-Mounted Permanent Magnet Synchronous Motor(SPMSM) in this paper. By observing the stator current, the extended back Electromotive Force(back-EMF)of the motor is estimated, and the position and angle of the rotor are obtained by using the Phase-Locked Loop (PLL) structure. The improved integrated SMO control system not only ensures the system to converge to the equilibrium point in finite time, but also reduces the steady-state error. A new exponential reaching law is also designed in which the sgn (s) of the constant velocity term is replaced by the sigmoid (s). For improving the reaching speed, the gain adaptive function is added to the exponential term of the approaching law to make its coefficient change with the system state. Simulation results compared with the traditional SMO show that the control system based on the improved SMO can reduce observation error, enhance robustness, and suppress chattering phenomenon.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3773 ◽  
Author(s):  
Ye ◽  
Shi ◽  
Wang ◽  
Li ◽  
Xia

Different from the traditional method of the interior permanent magnet synchronous motor (IPMSM), the sensorless maximum torque per ampere (MTPA) control scheme in this paper does not need two observers for rotor position and d-q axis inductances, respectively. It only needs an adaptive sliding mode observer (ASMO) based on the extended flux (EF) to realize double-loop control and MTPA operation simultaneously. The adaptive mechanism of rotor speed is designed to ensure stability of the ASMO. The rotor position and the difference between d-axis and q-axis inductances are obtained from the estimated EF to acquire the MTPA points when the position sensor of the IPMSM is absent. The proposed scheme is realized on a 20kW IPMSM where the sensorless control performance and the MTPA control performance are tested. The effectiveness of the proposed method is verified by the experiment results.


Sign in / Sign up

Export Citation Format

Share Document