scholarly journals A new infrared volcano monitoring using GCOM-C (SHIKISAI) satellite: Applications to the Asia-Pacific region

2020 ◽  
Author(s):  
Takayuki Kaneko ◽  
Atsushi Yasuda ◽  
Kenji Takasaki ◽  
Shun Nakano ◽  
Toshitsugu Fujii ◽  
...  

Abstract The GCOM-C (SHIKISAI) satellite was developed to understand the mechanisms of global climate change. The Second-generation Global Imager (SGLI) onboard GCOM-C is an optical sensor observing wavelengths from 380 nm to 12.0 μm in 19 bands. One of the notable features is that the resolution of the 1.63-, 10.8-, and 12.0-µm bands is 250 m, with an observation frequency of 2-3 days. To investigate the effective use and potential of the 250-m resolution of these SGLI bands in the study of eruptive activities, we analyzed four practical cases. As an example of large-scale effusive activity, we studied the 2018 Kilauea eruption. By analyzing the series of 10.8-μm band images using cumulative thermal anomaly maps, we could observe that the lava effused on the lower East Rift Zone, initially flowed down the southern slope to the sea, and then moved eastward. As an example of lava dome growth and generation of associated pyroclastic flows, the activity at Sheveluch between December 2018 and December 2019 was analyzed. The 1.63- and 10.8-µm bands were shown to be suitable for observing growth of the lava dome and occurrence of pyroclastic flows, respectively. We found that the pyroclastic flows occurred during periods of rapid lava dome expansion. For the study of an active crater lake, the activity of Ijen during 2019 was analyzed. The lake temperature was found to rise rapidly in mid-May and reach 38 °C in mid-June. We also analyzed the intermittent activities of small-scale Vulcanian eruptions at Sakurajima in 2019. The 1.63-µm band was useful for detecting activities that are associated with Vulcanian eruptions. Analytical results for these case studies demonstrated that the GCOM-C SGLI images are beneficial for observing various aspects of volcanic activity, and their real-time use may contribute to reducing eruption-related disasters.

2020 ◽  
Author(s):  
Takayuki Kaneko ◽  
Atsushi Yasuda ◽  
Kenji Takasaki ◽  
Shun Nakano ◽  
Toshitsugu Fujii ◽  
...  

Abstract The GCOM-C (SHIKISAI) satellite was developed to understand the mechanisms of global climate change. The Second-generation Global Imager (SGLI) onboard GCOM-C is an optical sensor observing wavelengths from 380 nm to 12.0 µm in 19 bands. One of the notable features is that the resolution of the 1.63-, 10.8-, and 12.0-µm bands is 250 m, with an observation frequency of 2–3 days. To investigate the effective use and potential of the 250-m resolution of these SGLI bands in the study of eruptive activities, we analyzed four practical cases. As an example of large-scale effusive activity, we studied the 2018 Kilauea eruption. By analyzing the series of 10.8-µm band images using cumulative thermal anomaly maps, we could observe that the lava effused on the lower East Rift Zone, initially flowed down the southern slope to the sea, and then moved eastward. As an example of lava dome growth and generation of associated pyroclastic flows, the activity at Sheveluch between December 2018 and December 2019 was analyzed. The 1.63- and 10.8-µm bands were shown to be suitable for observing growth of the lava dome and occurrence of pyroclastic flows, respectively. We found that the pyroclastic flows occurred during periods of rapid lava dome expansion. For the study of an active crater lake, the activity of Ijen during 2019 was analyzed. The lake temperature was found to rise rapidly in mid-May and reach 38 °C in mid-June. We also analyzed the intermittent activities of small-scale Vulcanian eruptions at Sakurajima in 2019. The 1.63-µm band was useful for detecting activities that are associated with Vulcanian eruptions. Analytical results for these case studies demonstrated that the GCOM-C SGLI images are beneficial for observing various aspects of volcanic activity, and their real-time use may contribute to reducing eruption-related disasters.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


2021 ◽  
Vol 52 (1) ◽  
pp. 29-32
Author(s):  
Sylvain Viroulet ◽  
Chris Johnson ◽  
Nico Gray

During hazardous geophysical mass flows, such as rock or snow avalanches, debris flows and volcanic pyroclastic flows, a continuous exchange of material can occur between the slide and the bed. The net balance between erosion and deposition of particles can drastically influence the behaviour of these flows. Recent advances in describing the non-monotonic effective basal friction and the internal granular rheology in depth averaged theories have enabled small scale laboratory experiments (see fig. 1) to be quantitatively reproduced and can also be implemented in large scale models to improve hazard mitigation.


2012 ◽  
Vol 12 (8) ◽  
pp. 3601-3610 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


2020 ◽  
Vol 59 (11) ◽  
pp. 1793-1807 ◽  
Author(s):  
Helene Birkelund Erlandsen ◽  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Marie Pontoppidan

AbstractWe used empirical–statistical downscaling in a pseudoreality context, in which both large-scale predictors and small-scale predictands were based on climate model results. The large-scale conditions were taken from a global climate model, and the small-scale conditions were taken from dynamical downscaling of the same global model with a convection-permitting regional climate model covering southern Norway. This hybrid downscaling approach, a “perfect model”–type experiment, provided 120 years of data under the CMIP5 high-emission scenario. Ample calibration samples made rigorous testing possible, enabling us to evaluate the effect of empirical–statistical model configurations and predictor choices and to assess the stationarity of the statistical models by investigating their sensitivity to different calibration intervals. The skill of the statistical models was evaluated in terms of their ability to reproduce the interannual correlation and long-term trends in seasonal 2-m temperature T2m, wet-day frequency fw, and wet-day mean precipitation μ. We found that different 30-yr calibration intervals often resulted in differing statistical models, depending on the specific choice of years. The hybrid downscaling approach allowed us to emulate seasonal mean regional climate model output with a high spatial resolution (0.05° latitude and 0.1° longitude grid) for up to 100 GCM runs while circumventing the issue of short calibration time, and it provides a robust set of empirically downscaled GCM runs.


Author(s):  
J. A. Principe ◽  
W. Takeuchi

Abstract. The last half century has witnessed the increasing trend of renewable energy utilization with solar photovoltaic (PV) systems as one of the most popular option. Solar PV continues to supplement the main grid in powering both commercial establishments (mainly for reduced electricity expense) as well as residential houses in isolated areas (for basic energy requirement such as for lighting purposes). The objective of this study is to assess the available solar PV power (PPV) potential considering the effects of high temperature, dust and snow in the Asia Pacific region. The PPV potential was estimated considering the effects of the said meteorological parameters using several satellite data including shortwave radiation from Advanced Himawari Imager 8 (AHI8), MOD04 aerosol data from Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation rate from Global Satellite Mapping of Precipitation (GSMaP), air temperature from NCEP/DOE AMIP-II Reanalysis-2 data, and snow water equivalent (SWE) from Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). The model is validated by comparing its outputs with the measured PV power from two solar PV installations in Bangkok, Thailand and Perth, Australia. Results show that maximum PPV is estimated at 2.5 GW (cell efficiency of 17.47%) for the region with the maximum decrease in PPV estimated to be about < 2%, 22% and 100% due to high temperature (temperature coefficient of power = 0.47%/K), dust and snow, respectively. Moreover, areas in India and Northern China were observed to experience the effects of both dust and temperature during March-April-May (MAM) season. Meanwhile, countries located in the higher latitudes were severely affected by snow while Australia by high temperature during Dec-Jan-Feb (DJF) season. The model has a mean percentage prediction error (PPE) range of 5% to18% and 7% to 23% in seasonal and monthly estimations, respectively. Outputs from this study can be used by stakeholders of solar PV in planning for small-scale or large-scale solar PV projects in the solar rich region of Asia Pacific.


2016 ◽  
Vol 21 (1) ◽  
Author(s):  
Franck Lavigne ◽  
Jean-Claude Thouret ◽  
Danang Sri Hadmoko ◽  
Bambang Sukatja

Lahar has been applied as a general term for rapidly flowing, high-concentration, poorly sorted sediment-laden mixtures of rock debris and water (other than normal streamflow) from a volcano. Lahars are one of the most destructive phenomena associated with composite volcanoes, which are dominant in Java Island. Resulting deposits of lahar are poorly sorted, massive, made up of clasts (chiefly of volcanic composition), that generally include a mud-poor matrix. The aim of this research is threefold: to discuss the initiation of lahars occurrences, their dynamics, to assess the hazard and to analyse the deposition. Lahars are either a direct result of eruptive activity or not temporally related to eruptions. Syn-eruptive lahars may result from the transformation on pyroclastic flows or debris avalanches which transform to aqueous flows (e.g. at Papandayan in November 2002); They may be also generated through lake outburst or breaching (e.g. at Kelut in 1909 or 1966), and through removal of pyroclastic debris by subsequent heavy rainstorms. Post-eruptive lahar occurs during several years after an eruption. At Merapi, lahars are commonly rain-triggered by rainfalls having an average intensity of about 40 mm in 2 hours. Most occur during the rainy season from November to April. Non-eruptive lahars are flows generated without eruptive activity, particularly in the case of a debris avalanche or a lake outburst (e.g., Kelut). A lahar may include one or more discrete flow processes and encompass a variety of rheological flow types and flow transformations. As such, lahars encompass a continuum between debris flows and hyperconcentrated flows, as observed at Merapi, Kelut and Semeru volcanoes. Debris flows, with water contents ranging from 10 to no more than about 25% weight, are non-newtonian fluids that move as fairly coherent masses in what is thought to be predominantly laminar fashion. However, the relative importance of laminar versus turbulent regime is still debatable. Hyperconcentrated streamflows contain 25- to about 40%-weight-water; these flows possess some yield stress, but they are characteristically turbulent. Hazard-zone maps for lahar were produced for most of the the Javanese volcanoes, but these maps are on too small-scale to meet modern zoning requirements. More recently, a few large-scale maps (1/10,000 and 1/2,000-scale) and risk assessments have been completed for a few critical river systems at Merapi.


2020 ◽  
Author(s):  
Joschka Geissler ◽  
Christoph Mayer ◽  
Juilson Jubanski ◽  
Ulrich Münzer ◽  
Florian Siegert

Abstract. Glaciers all over the world experience an increasing mass loss during recent decades due to change in the global climate. This leads to considerable environmental consequences in the densely populated Alps and many other mountain ranges in the world. We used high-resolution aerial photogrammetry within the AlpSenseBench project to investigate glacier retreat in great spatial and temporal detail in the Ötztaler Alps, a significant glacier area in Austria. Long-term in situ glaciological observations are available for this region, and a multitemporal time series of digital aerial images with a spatial resolution of 20 cm acquired over a period of 10 years exists. Glacier retreat of all 25 glaciers in the region, including the Vernagtferner, was analyzed by investigating glacier extent and surface elevation changes, derived from the aerial images by digital surface model (DSM) generation. Due to different acquisition dates of the large scale photogrammetric surveys and the glaciological data, a correction was established using a dedicated unmanned aerial vehicle (UAV) survey across the major part of the Vernagtferner. This allowed us to compare the mass balances from geodetic and glaciological techniques, which reveals the potentials of the combination of these two techniques for gaining a better insight into glacier changes and its spatial distribution. The results show a clear increase of glacier mass loss for all glaciers in the region, including the Vernagtferner over the last decade. Additionally, the influence of debris-cover on mass balance, as well as the magnitude of dynamic processes, could be quantified. The comparison of geodetic elevation differences and the interpolated glaciological data reveals that there exists a high potential in detecting local peculiarities of mass balance distribution and for correcting small scale deviations, not revealed in the interpolated glaciological information. The availability of high resolution multi-temporal digital aerial imagery for most of the glaciers in the Alps will provide a more comprehensive and detailed analysis of climate change-induced glacier retreat.


2021 ◽  
Vol 118 (40) ◽  
pp. e2106147118
Author(s):  
Lennart T. Bach ◽  
Philip W. Boyd

Mitigating global climate change will require gigaton-scale carbon dioxide removal (CDR) as a supplement to rapid emissions reduction. The oceans cover 71% of the Earth surface and have the potential to provide much of the required CDR. However, none of the proposed marine CDR (mCDR) methods is sufficiently well understood to determine their real-world efficiency and environmental side effects. Here, we argue that using natural mCDR analogs should become the third interconnecting pillar in the mCDR assessment as they bridge the gap between numerical simulations (i.e., large scale/reduced complexity) and experimental studies (i.e., small scale/high complexity). Natural mCDR analogs occur at no cost, can provide a wealth of data to inform mCDR, and do not require legal permission or social license for their study. We propose four simple criteria to identify particularly useful analogs: 1) large scale, 2) abruptness of perturbation, 3) availability of unperturbed control sites, and 4) reoccurrence. Based on these criteria, we highlight four examples: 1) equatorial upwelling as a natural analog for artificial upwelling, 2) downstream of Kerguelen Island for ocean iron fertilization, 3) the Black and Caspian Seas for ocean alkalinity enhancement, and 4) the Great Atlantic Sargassum Belt for ocean afforestation. These natural analogs provide a reality check for experimental assessments and numerical modeling of mCDR. Ultimately, projections of mCDR efficacy and sustainability supported by observations from natural analogs will provide the real-world context for the public debate and will facilitate political decisions on mCDR implementation. We anticipate that a rigorous investigation of natural analogs will fast-forward the urgently needed assessment of mCDR.


2012 ◽  
Vol 12 (1) ◽  
pp. 1191-1213 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data using Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


Sign in / Sign up

Export Citation Format

Share Document