scholarly journals Effects of Biochar on Root System Development and Leaf Photosynthetic Characteristics of Flue-cured Tobacco by the Three-years Located Experiment

Author(s):  
Tianbao Ren ◽  
Huanhuan Wang ◽  
Ye Yuan ◽  
Huilin Feng ◽  
Bo Wang ◽  
...  

Abstract In order to explore the effects of biochar on root system and growth characteristics of flue-tobacco, three years of field experiments were conducted to study the influence of different biochar application levels [600 (T1), 1200 (T2), 1800(T3), 2400 (T4), 3000 (T5) kg/ha] and no fertilizer (CK) on the root physiological indexes and growth index of tobacco. Compared with local conventional fertilization, the application rate of N fertilizer in each treatment (except for control) was reduced by 40% to analyze the effects of different amount of biochar on the physiological indexes of tobacco roots and leaf photosynthesis during flourishing. The results showed that tobacco plants' root development status in the flourishing period was consistent with the photosynthetic physiological indexes, chlorophyll content, and leaf-area coefficient. Compared with the control, the application of biochar could increase the root vigor by 177.8%. Biochar improved the roots, increasing the total root area by 91.35% and the number of root tips by 100.9%. Meanwhile, biochar increased the net photosynthetic rate of tobacco leaves by 77.3% and the total tobacco biomass by 72.5%. Studies have shown that biochar can promote the development of tobacco roots, and then enhance the photosynthesis of leaves, so that tobacco plants can grow healthily, which is conducive to the tobacco production and the cultivation of soil.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianbao Ren ◽  
Huanhuan Wang ◽  
Ye Yuan ◽  
Huilin Feng ◽  
Bo Wang ◽  
...  

AbstractIn order to explore the effects of biochar on root system and growth characteristics of flue-tobacco, three years of field experiments were conducted to study the influence of different biochar application levels [600 (T1), 1200 (T2), 1800(T3), 2400 (T4), 3000 (T5) kg/ha] and no fertilizer (CK) on the root physiological indexes and growth index of tobacco. Compared with local conventional fertilization, the application rate of N fertilizer in each treatment (except for control) was reduced by 40% to analyze the effects of different amount of biochar on the physiological indexes of tobacco roots and leaf photosynthesis during flourishing. The results showed that tobacco plants' root development status in the flourishing period was consistent with the photosynthetic physiological indexes, chlorophyll content, and leaf-area coefficient. Compared with the control, the application of biochar could increase the root vigor by 177.8%. Biochar improved the roots, increasing the total root area by 91.35% and the number of root tips by 100.9%. Meanwhile, biochar increased the net photosynthetic rate of tobacco leaves by 77.3% and the total tobacco biomass by 72.5%. Studies have shown that biochar can promote the development of tobacco roots, and then enhance the photosynthesis of leaves, so that tobacco plants can grow healthily, which is conducive to the tobacco production and the cultivation of soil.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 466c-466
Author(s):  
Gisele Martins ◽  
Robert Geneve ◽  
Sharon Kester

A study was conducted with marigold `Little Devil Flame' to evaluate the effects of copper-treated containers on root system development in marigold (Tagets patula). The internal walls of plugs were painted or without SpinOut (Griffen Corp., Valdosta, Ga.), a form of cupric hydroxide in latex paint. Two marigold seeds were sown directly into the plugs filled with MetroMix 360 (Scott's) and thinned after 5 days. Plants were grown under standard greenhouse conditions. After 14 days, half of the plants were transplanted into 6-packs and in the other half medium was washed from and the root system were digitally analyzed using MacRhizo (Regent, Inc.). Shoot and root dry weight also were collected. Five days later, the same data were collected from the transplanted plants. Copper hydroxide reduced root and shoot growth prior to transplanting. Average root length of untreated plants was 41% larger than copper treated plants before transplanting and 25% larger after transplanting. There were no carryover effects of the copper on subsequent root growth. Copper-treated plants grew an average of 59.3 mm, while untreated plants grew 53.1 mm after transplanting. Root tips were killed when they contacted the copper-treated container surface. These roots had shorter internal and external link lengths and a greater average root diameter. It appears that the initial effect of copper on marigold roots system is to kill the root tip and inhibit further elongation. Overall branching pattern in the root system was not altered until after transplanting.


1996 ◽  
Vol 65 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Yasuhiro IZUMI ◽  
Yasuhiro KONO ◽  
Akira YAMAUCHI ◽  
Morio IIJIMA

Author(s):  
S. Acikbas ◽  
M.A. Ozyazici ◽  
H. Bektas

Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlý) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlý (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.


2020 ◽  
Vol 02 (03) ◽  
pp. 35-38
Author(s):  
Kamala Arastun Sadigov ◽  

The presented article provides seed propagation, seedling morphology and growth dynamics, root system development in connection with the introduction of Hippophae rhamnoides L. species found in our natural flora in Absheron. The study found that the species Hippophae rhamnoides L. is well adapted to the soil and climatic conditions of Absheron and can be grown in cultural conditions. Key words: Hippophae rhamnoides L., introdiction, seed, repoduction, morphology, dewelopment, root system


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Root Research ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 111-118
Author(s):  
Shigenori Morita ◽  
Nobuhito Sekiya ◽  
Jun Abe

Sign in / Sign up

Export Citation Format

Share Document