scholarly journals Apigenin neutralizes the inhibitory effect of inflammation on the osteogenic differentiation of human mesenchymal stem cells

Author(s):  
Azita Asadi ◽  
Farjam Goudarzi ◽  
Mustafa Ghanadian ◽  
Adel Mohammadalipour

Abstract Background: The stimulating effects of apigenin on mesenchymal stem cells (MSCs) osteogenesis, as well as the anti-inflammatory effect of this flavonoid, have been identified. In this study, osteogenic differentiation was investigated under inflammatory conditions and treatment with apigenin. Methods and Results: Along with osteogenic differentiation of MSCs, they became inflamed with LPS/PA, and treated simultaneously with apigenin. The degree of differentiation was assessed by alizarin red staining and alkaline phosphatase (ALP) activity. Also, gene expression of NLRP3 and RUNX2 was performed along with protein expression of IL-1β. Significant increase in NLRP3 and IL-1β were observed in MSCs when exposed to LPS/PA (p<0.01). Also, the osteogenesis was significantly decreased (p<0.01). Apigenin treatment induced significantly higher gene expression of RUNX2, the activity of ALP, and cell staining (p<0.01) which were also associated with reduced inflammation in these cells. Conclusions: The effectiveness of apigenin on osteogenesis under inflammatory conditions was cautiously observed.

2015 ◽  
Vol 15 (10) ◽  
pp. 7966-7970 ◽  
Author(s):  
Linhua Jin ◽  
Jong Ho Lee ◽  
Oh Seong Jin ◽  
Yong Cheol Shin ◽  
Min Jeong Kim ◽  
...  

Osteoprogenitor cells play a significant role in the growth or repair of bones, and have great potential as cell sources for regenerative medicine and bone tissue engineering, but control of their specific differentiation into bone cells remains a challenge. Graphene-based nanomaterials are attractive candidates for biomedical applications as substrates for stem cell (SC) differentiation, scaffolds in tissue engineering, and components of implant devices owing to their biocompatible, transferable and implantable properties. This study examined the enhanced osteogenic differentiation of human mesenchymal stem cells (hMSCs) by reduced graphene oxide (rGO) nanoparticles (NPs), and rGO NPs was prepared by reducing graphene oxide (GO) with a hydrazine treatment followed by annealing in argon and hydrogen. The cytotoxicity profile of each particle was examined using a water-soluble tetrazolium-8 (WST-8) assay. At different time-points, a WST-8 assay, alkaline phosphatase (ALP) activity assay and alizarin red S (ARS) staining were used to determine the effects of rGO NPs on proliferation, differentiation and mineralization, respectively. The results suggest that graphene-based materials have potential as a platform for stem cells culture and biomedicalapplications.


2009 ◽  
Vol 9 ◽  
pp. 118-129 ◽  
Author(s):  
Markus D. Schofer ◽  
Ulrich Boudriot ◽  
Irini Leifeld ◽  
Romina I. Sütterlin ◽  
Markus Rudisile ◽  
...  

The aim of this study was to enhance synthetic poly(L-lactic acid) (PLLA) nanofibers by blending with collagen I (COLI) in order to improve their ability to promote growth and osteogenic differentiation of stem cellsin vitro. Fiber matrices composed of PLLA and COLI in different ratios were characterized with respect to their morphology, as well as their ability to promote growth of human mesenchymal stem cells (hMSC) over a period of 22 days. Furthermore, the course of differentiation was analyzed by gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and COLI. The PLLA-COLI blend nanofibers presented themselves with a relatively smooth surface. They were more hydrophilic as compared to PLLA nanofibers alone and formed a gel-like structure with a stable nanofiber backbone when incubated in aqueous solutions. We examined nanofibers composed of different PLLA and COLI ratios. A composition of 4:1 ratio of PLLA:COLI showed the best results. When hMSC were cultured on the PLLA-COLI nanofiber blend, growth as well as osteoblast differentiation (determined as gene expression of ALP, OC, and COLI) was enhanced when compared to PLLA nanofibers alone. Therefore, the blending of PLLA with COLI might be a suitable tool to enhance PLLA nanofibers with respect to bone tissue engineering.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Samaneh Mollazadeh ◽  
Bibi Sedigheh Fazly Bazzaz ◽  
Vajiheh Neshati ◽  
Antoine A. F. de Vries ◽  
Hojjat Naderi-Meshkin ◽  
...  

Abstract Background Skeletal development and its cellular function are regulated by various transcription factors. The T-box (Tbx) family of transcription factors have critical roles in cellular differentiation as well as heart and limbs organogenesis. These factors possess activator and/or repressor domains to modify the expression of target genes. Despite the obvious effects of Tbx20 on heart development, its impact on bone development is still unknown. Methods To investigate the consequence by forced Tbx20 expression in the osteogenic differentiation of human mesenchymal stem cells derived from adipose tissue (Ad-MSCs), these cells were transduced with a bicistronic lentiviral vector encoding Tbx20 and an enhanced green fluorescent protein. Results Tbx20 gene delivery system suppressed the osteogenic differentiation of Ad-MSCs, as indicated by reduction in alkaline phosphatase activity and Alizarin Red S staining. Consistently, reverse transcription-polymerase chain reaction analyses showed that Tbx20 gain-of-function reduced the expression levels of osteoblast marker genes in osteo-inductive Ad-MSCs cultures. Accordingly, Tbx20 negatively affected osteogenesis through modulating expression of key factors involved in this process. Conclusion The present study suggests that Tbx20 could inhibit osteogenic differentiation in adipose-derived human mesenchymal stem cells.


2008 ◽  
Vol 8 ◽  
pp. 1269-1279 ◽  
Author(s):  
Markus D. Schofer ◽  
Susanne Fuchs-Winkelmann ◽  
Christian Gräbedünkel ◽  
Christina Wack ◽  
Roland Dersch ◽  
...  

The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form.


2021 ◽  
Vol 22 (20) ◽  
pp. 11216
Author(s):  
Ivan López-González ◽  
Camilo Zamora-Ledezma ◽  
María Isabel Sanchez-Lorencio ◽  
Elena Tristante Barrenechea ◽  
José Antonio Gabaldón-Hernández ◽  
...  

In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and β-tricalcium phosphate (β-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription–quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/β-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 412
Author(s):  
Yu-Jin Kim ◽  
Jaeyoung Lee ◽  
Gwang-Bum Im ◽  
Jihun Song ◽  
Jiwoo Song ◽  
...  

In this study we developed a dual therapeutic metal ion-releasing nanoparticle for advanced osteogenic differentiation of stem cells. In order to enhance the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and induce angiogenesis, zinc (Zn) and iron (Fe) were synthesized together into a nanoparticle with a pH-sensitive degradation property. Zn and Fe were loaded within the nanoparticles to promote early osteogenic gene expression and to induce angiogenic paracrine factor secretion for hMSCs. In vitro studies revealed that treating an optimized concentration of our zinc-based iron oxide nanoparticles to hMSCs delivered Zn and Fe ion in a controlled release manner and supported osteogenic gene expression (RUNX2 and alkaline phosphatase) with improved vascular endothelial growth factor secretion. Simultaneous intracellular release of Zn and Fe ions through the endocytosis of the nanoparticles further modulated the mild reactive oxygen species generation level in hMSCs without cytotoxicity and thus improved the osteogenic capacity of the stem cells. Current results suggest that our dual ion releasing nanoparticles might provide a promising platform for future biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document