scholarly journals Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30

2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. Results: Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.

2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei . Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30.Results: Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to iq a positive correlation between lactose concentration and cellulase production, iiq a particular dependence of the lactose onto the β-glucosidase regulation and iiiq a negative regulation of the development process and growth.Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1 , clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to bettercellulase-producing strains in industry-like conditions.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. Results Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. Conclusions This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.


2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. Results: Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.


2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei . Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network.Results: Experimental results confirmed the impact of sugar mixture on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using the BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth.Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1 , clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains.


2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

AbstractBackgroundThe degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network.ResultsExperimental results confirmed the impact of sugar mixture on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network (GRN) built using the BRANE Cut software reveals three sub-networks related to i a positive correlation between lactose concentration and cellulase production, ii a particular dependence of the lactose onto the β-glucosidase regulation and iii a negative regulation of the development process and growth.ConclusionsThis work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains.


2019 ◽  
Vol 180 (3) ◽  
pp. 1740-1755 ◽  
Author(s):  
Philippa Borrill ◽  
Sophie A. Harrington ◽  
James Simmonds ◽  
Cristobal Uauy

2011 ◽  
Vol 240 (9) ◽  
pp. spcone-spcone
Author(s):  
Diana S. José-Edwards ◽  
Pierre Kerner ◽  
Jamie E. Kugler ◽  
Wei Deng ◽  
Di Jiang ◽  
...  

PLoS Biology ◽  
2013 ◽  
Vol 11 (10) ◽  
pp. e1001696 ◽  
Author(s):  
David A. Garfield ◽  
Daniel E. Runcie ◽  
Courtney C. Babbitt ◽  
Ralph Haygood ◽  
William J. Nielsen ◽  
...  

2018 ◽  
Author(s):  
Philippa Borrill ◽  
Sophie A. Harrington ◽  
James Simmonds ◽  
Cristobal Uauy

AbstractSenescence is a tightly regulated developmental programme which is coordinated by transcription factors. Identifying these transcription factors in crops will provide opportunities to tailor the senescence process to different environmental conditions and regulate the balance between yield and grain nutrient content. Here we use ten time points of gene expression data alongside gene network modelling to identify transcription factors regulating senescence in polyploid wheat. We observe two main phases of transcription changes during senescence: early downregulation of housekeeping and metabolic processes followed by upregulation of transport and hormone related genes. We have identified transcription factor families associated with these early and later waves of differential expression. Using gene regulatory network modelling alongside complementary publicly available datasets we identified candidate transcription factors for controlling senescence. We validated the function of one of these candidate transcription factors in senescence using wheat chemically-induced mutants. This study lays the ground work to understand the transcription factors which regulate senescence in polyploid wheat and exemplifies the integration of time-series data with publicly available expression atlases and networks to identify candidate regulatory genes.


Sign in / Sign up

Export Citation Format

Share Document