scholarly journals Habitat ephemerality affects the evolution of contrasting growth strategies and cannibalism in anuran larvae

Author(s):  
Dogeun Oh ◽  
Yongsu Kim ◽  
Sohee Yoo ◽  
Changku Kang

Abstract Ephemeral streams are challenging environments for tadpoles; thus adaptive features that increase the survival of these larvae should be favored by natural selection. In this study, we compared the adaptive growth strategies of Bombina orientalis (the oriental fire-bellied toad) tadpoles from ephemeral streams with those of such tadpoles from non-ephemeral streams. Using a common garden experiment, we tested the interactive effects of location (ephemeral vs. non-ephemeral), food availability, and growing density on larval period, weight at metamorphosis, and cannibalism. We found that tadpoles from ephemeral streams underwent a shorter larval period compared with those from non-ephemeral streams but that this difference was contingent on food availability and density. The observed faster growth is likely to be an adaptive response because tadpoles in ephemeral streams experience more biotic/abiotic stressors, such as desiccation risk and limited resources, compared with those in non-ephemeral streams, with their earlier metamorphosis potentially resulting in survival benefits. As a trade-off for their faster growth, tadpoles from ephemeral streams had a lower body weight at metamorphosis compared with those from non-ephemeral streams, but only when food was sufficient. We also found lower cannibalism rates among tadpoles from ephemeral streams, which can be attributed to the indirect fitness costs of cannibalizing their kin. Our study is the first to demonstrate how ephemeral habitats have affected the evolutionary change in cannibalistic behaviors in anurans and provides additional evidence that natural selection has mediated the evolution of growth strategies of tadpoles in ephemeral streams.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12172
Author(s):  
Dogeun Oh ◽  
Yongsu Kim ◽  
Sohee Yoo ◽  
Changku Kang

Ephemeral streams are challenging environments for tadpoles; thus, adaptive features that increase the survival of these larvae should be favored by natural selection. In this study, we compared the adaptive growth strategies of Bombina orientalis (the oriental fire-bellied toad) tadpoles from ephemeral streams with those of such tadpoles from non-ephemeral streams. Using a common garden experiment, we tested the interactive effects of location (ephemeral vs. non-ephemeral), food availability, and growing density on larval period, weight at metamorphosis, and cannibalism. We found that tadpoles from ephemeral streams underwent a shorter larval period compared with those from non-ephemeral streams but that this difference was contingent on food availability. The observed faster growth is likely to be an adaptive response because tadpoles in ephemeral streams experience more biotic/abiotic stressors, such as desiccation risk and limited resources, compared with those in non-ephemeral streams, with their earlier metamorphosis potentially resulting in survival benefits. As a trade-off for their faster growth, tadpoles from ephemeral streams generally had a lower body weight at metamorphosis compared with those from non-ephemeral streams. We also found lower cannibalism rates among tadpoles from ephemeral streams, which can be attributed to the indirect fitness costs of cannibalizing their kin. Our study demonstrates how ephemeral habitats have affected the evolutionary change in cannibalistic behaviors in anurans and provides additional evidence that natural selection has mediated the evolution of growth strategies of tadpoles in ephemeral streams.


Botany ◽  
2016 ◽  
Vol 94 (3) ◽  
pp. 201-213
Author(s):  
Anselmo Nogueira ◽  
Pedro J. Rey ◽  
Julio M. Alcántara ◽  
Lúcia G. Lohmann

Extra-floral nectaries (EFNs) are thought to represent protective adaptations against herbivory, but studies on the evolutionary ecology of EFNs have seldom been conducted. Here we investigate the patterns of natural selection and genetic variation in EFN traits in two wild populations of Anemopaegma album Mart. ex DC. (Bignoniaceae) that have been previously described as contrasting EFN – ant adapted localities in the Neotropical savanna (Cristália and Grão Mogol). In each population, four EFN descriptors, foliar damage, and reproductive success variables were measured per plant (100–120 plants per population). To estimate the heritability of EFN traits, we crossed reproductive plants in the field, and grew offspring plants in a common garden. The results showed that ant assemblages differed between populations, as did the range of foliar herbivory. Genetic variation and positive phenotypic selection in EFN abundance were only detected in the Cristália population, in which plants with more EFNs were more likely to reproduce. An evaluation of putative causal links conducted by path analysis corroborated the existence of phenotypic selection on EFNs, which was mediated by the herbivory process in the Cristália population. While EFNs could be currently under selection in Cristália, it is possible that past selection may have driven EFN traits to become locally adapted to the local ant assemblage in the Grão Mogol population.


2003 ◽  
Vol 81 (7) ◽  
pp. 1168-1173 ◽  
Author(s):  
Mark A Beekey ◽  
Ronald H Karlson

Brood size is often constrained by the amount of energy available to produce offspring. Yet, energetic constraints may not be as important if the physical capacity to brood offspring is limited. Investigating the relative importance of energetic and physical constraints on brood size is necessary to understand how reproductive strategies are molded by natural selection. We investigated how food availability affects brood size in Sphaerium striatinum, a freshwater bivalve. We reared juveniles to adulthood under three food levels in a common garden experiment. The number of reproductive attempts, brood size, and stage of offspring development were measured. Clams reared with the most food reproduced more often, produced more offspring per reproductive attempt, and contained larger broods than clams reared with less food. These data support the notion that food availability is an important factor in the production of offspring and overall brood size. However, the number of offspring surviving to later stages of development was not different among treatments. In fact, clams reared with the most food lost proportionately more offspring than clams reared with less food. We conclude that physical constraints are more important in determining overall brood size than energetic constraints in S. striatinum.


Oecologia ◽  
2021 ◽  
Author(s):  
Melanie Nägeli ◽  
Patrick Scherler ◽  
Stephanie Witczak ◽  
Benedetta Catitti ◽  
Adrian Aebischer ◽  
...  

AbstractThe joint effects of interacting environmental factors on key demographic parameters can exacerbate or mitigate the separate factors’ effects on population dynamics. Given ongoing changes in climate and land use, assessing interactions between weather and food availability on reproductive performance is crucial to understand and forecast population dynamics. By conducting a feeding experiment in 4 years with different weather conditions, we were able to disentangle the effects of weather, food availability and their interactions on reproductive parameters in an expanding population of the red kite (Milvus milvus), a conservation-relevant raptor known to be supported by anthropogenic feeding. Brood loss occurred mainly during the incubation phase, and was associated with rainfall and low food availability. In contrast, brood loss during the nestling phase occurred mostly due to low temperatures. Survival of last-hatched nestlings and nestling development was enhanced by food supplementation and reduced by adverse weather conditions. However, we found no support for interactive effects of weather and food availability, suggesting that these factors affect reproduction of red kites additively. The results not only suggest that food-weather interactions are prevented by parental life-history trade-offs, but that food availability and weather conditions are crucial separate determinants of reproductive output, and thus population productivity. Overall, our results suggest that the observed increase in spring temperatures and enhanced anthropogenic food resources have contributed to the elevational expansion and the growth of the study population during the last decades.


Hydrobiologia ◽  
2011 ◽  
Vol 679 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Juan Pablo Barriga ◽  
Miguel Ángel Battini ◽  
Martín García-Asorey ◽  
Cecilia Carrea ◽  
Patricio Jorge Macchi ◽  
...  

2015 ◽  
Vol 65 (3-4) ◽  
pp. 233-240 ◽  
Author(s):  
Tong Lei Yu ◽  
Rui Hua Pang ◽  
Kun Chen

Larval amphibians are especially likely to encounter variation in temperature and resource availability because they live in a variety of aquatic habitats. In this study, plasticity in growth rates, survivorship, age and size at metamorphosis were examined in the Chinese brown frog (Rana chensinensis) under different combinations of rearing temperature and food level. Tadpoles reared at 23.2°C had larger mass at metamorphosis and a longer larval period than tadpoles reared at 25.3 and 28.1°C. High food level shortened the larval period and produced a larger size at metamorphosis. The interaction of rearing temperature and food level significantly influenced the growth and survival of Chinese brown frog tadpoles. At a low food level, tadpoles reared at 23.2°C displayed faster growth than tadpoles reared at the higher temperatures, and tadpoles had lower survival at 28.1°C than at the lower temperatures. Therefore, global warming or local manipulations of the environment could limit growth and development of Chinese brown frog tadpoles, resulting in low survival, but food availability may mediate effects of temperature. We suggest that Chinese brown frog tadpoles prefer cool a temperature and high food level for longer larval periods to capitalize on the opportunity of entering the terrestrial habitat with a larger body size.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 149 ◽  
Author(s):  
Melissa Oddie ◽  
Bjørn Dahle ◽  
Peter Neumann

The ectoparasitic mite Varroa destructor is a key factor for colony losses in European honey bee subspecies (Apis mellifera), but it is also known that some host populations have adapted to the mite by means of natural selection. The role of a shorter host brood postcapping period in reducing mite reproductive success has been investigated in other surviving subspecies, however its role in the adaptation of European honey bee populations has not been addressed. Here, we use a common garden approach to compare the length of the worker brood postcapping period in a Norwegian surviving honey bee population with the postcapping period of a local susceptible population. The data show a significantly shorter postcapping period in the surviving population for ~10% of the brood. Since even small differences in postcapping period can significantly reduce mite reproductive success, this mechanism may well contribute to natural colony survival. It appears most likely that several mechanisms acting together produce the full mite-surviving colony phenotype.


2021 ◽  
Author(s):  
Peter Dietrich ◽  
Jens Schumacher ◽  
Nico Eisenhauer ◽  
Christiane Roscher

AbstractGlobal change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to these changes and how this affects their responses to global change. To close this gap, we performed a common garden experiment testing whether plant responses to global change are influenced by the selection history of the plants and the conditioning history of soil at different levels of plant diversity. Therefore, we collected seeds and took soil samples from 14-year old plant communities of a biodiversity experiment. Offspring of plants from low- and high-diversity communities were either grown in their own soil or in soil of a different community, and were either exposed to drought, increased nitrogen input, or a combination of both. Results show that, under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, mainly soil, and to a lesser extent plant history, influenced the expression of plant traits. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which feedback on the eco-evolutionary pathways of the plants and thus their responses to global change.


Sign in / Sign up

Export Citation Format

Share Document