scholarly journals Free-standing nanopaper electrode for all-printed super-flexible perovskite solar cells

Author(s):  
Maria Vasilopoulou ◽  
Silva Wilson Jose da ◽  
Hyeong Pil Kim ◽  
Brett Nathan Carnio ◽  
Behzad Ahvazi ◽  
...  

Abstract The development of all-printed, flexible solar cells of high efficiency and ultra-low weight will offer advancements for new market entrants. Herein, we report the design and fabrication of all-printed in ambient air, super-flexible perovskite solar cells with approaching 20% power conversion efficiency and extremely low weight of 5.1 g m-2 leading to an unprecedented power-to-weight ratio of 38,470 W Kg-1. This performance advance was achieved through the design of a highly transparent and conducting nanopaper used as a free-standing bottom electrode (FSBE). The FSBE consisted of cellulose nanocrystals grafted with semi-metallic super-reduced polyoxometalate clusters that enabled high conductivities up to 18 S cm-1 combined with transparency >96%. It also acted as a conformal barrier preventing performance loss upon heating at 95 oC under continuous illumination in inert environment; and strong resistance to decomposition when immersed in a mild citric acid water solution for 100 days, which we further exploit to demonstrate full device recyclability. The inherent flexibility of cellulose nanocrystals enabled remarkable flexibility of these cells under 2,000 repeated bending and folding cycles and mechanical strength upon extensive strain up to 20%. Notably, the nanopaper remained unaffected for strains up to 60%. These findings open the door for efficient and lightweight solar cells with a low environmental impact.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 915 ◽  
Author(s):  
Lei Shi ◽  
Huiying Hao ◽  
Jingjing Dong ◽  
Tingting Zhong ◽  
Chen Zhang ◽  
...  

Intermediate phase is considered an important aspect to deeply understand the crystallization procedure in the growth of high-quality perovskite layers by an anti-solvent technique. However, the moisture influence on the intermediate phase formation is not clear in air conditions as yet. In this work, pure (FA0.2MA1.8)Pb3X8(DMSO·DMF) intermediate phase was obtained in as-prepared perovskite film by spin-coating the precursor of co-solvent (DMSO and DMF) in an ambient air (RH20–30%). Moreover, the appropriate quantity of ethyl acetate (C4H8O2, EA) also controls the formation of pure intermediate phase. The uniform and homogeneous perovskite film was obtained after annealing this intermediate film. Therefore, the best power conversion efficiency (PCE) of perovskite solar cells (PSCs) is 16.24% with an average PCE of 15.53%, of which almost 86% of its initial PCE was preserved after 30 days in air conditions. Besides, the steady-state output efficiency ups to 15.38% under continuous illumination. In addition, the PCE of large area device (100 mm2) reaches 11.11% with a little hysteresis effect. This work would give an orientation for PSCs production at the commercial level, which could lower the cost of fabricating the high efficiency PSCs.


2021 ◽  
Vol 5 (20) ◽  
pp. 7628-7637
Author(s):  
Pengyun Zhang ◽  
Ningxia Gu ◽  
Xiang Chen ◽  
Lixin Song ◽  
Pingfan Du ◽  
...  

In this contribution, PSCs with a high efficiency and good stability are fabricated under ambient conditions without a glove box via introducing triethyl phosphate (TEP) into a perovskite through an antisolvent.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1521
Author(s):  
Jiabin Hao ◽  
Zeming Wang ◽  
Huiying Hao ◽  
Guanlei Wang ◽  
Hongcheng Gao ◽  
...  

So far, it is still a great challenge to prepare high efficiency organic–inorganic perovskite solar cells in ambient air. Specifically, moisture is easily combined with the perovskite material during the spin-coating process, which result in porous perovskite films with poor surface morphology. In this study, we investigated crystalline Ag-doped perovskite films by a one-step spin-coating method in air with 30–40% relative humidity (RH), in which ethyl acetate (EA) was used as antisolvent can absorb moisture in air to reduced nucleation density. More significantly, EA is a feasible and environmentally friendly solvent to replace highly toxic solvent. Moreover, 1.0% Ag-doped device shows a highest power conversion efficiency (PCE) of 14.36%. The improved performance is not only ascribed to the superior CH3NH3PbI3 film with high crystallinity but to the versatile tunability of energy band structure.


2020 ◽  
Vol 10 ◽  
pp. 184798042096163
Author(s):  
Kanyanee Sanglee ◽  
Surawut Chuangchote ◽  
Taweewat Krajangsang ◽  
Jaran Sritharathikhun ◽  
Kobsak Sriprapha ◽  
...  

Perovskite solar cells have been attracted as new representatives for the third-generation photovoltaic devices. Simple strategies for high efficiency with the long-term stability of solar cells are the challenges for commercial solar cell technology. Another challenge of the development toward industrial scale in perovskite solar cells is the production under the ambient and high humidity. In this sense, we successfully fabricated perovskite solar cells via solution depositions of all layers under ambient air with a relative humidity above 50%. Titanium dioxide (TiO2) nanoparticles with the roles for efficient charge extraction and electron transportation properties were used as an electron-transporting layer in the cell fabrication. The modification of TiO2 nanoparticles for energy band adjustment was done by doping with nontoxic cadmium sulfide (CdS) quantum dots. With the variation of CdS concentrations, energy band is not only changeable, but the enhancement of the perovskite solar cells efficiency could be achieved compared with the conventional cells made of pristine-TiO2 film and TiO2 nanoparticles.


2021 ◽  
Author(s):  
Linlin Qiu ◽  
Liang Chen ◽  
Wei-Hsiang Chen ◽  
Yongfeng Yuan ◽  
Lixin Song ◽  
...  

2015 ◽  
Vol 44 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Kuan-Lin Wu ◽  
Atsushi Kogo ◽  
Nobuya Sakai ◽  
Masashi Ikegami ◽  
Tsutomu Miyasaka

2017 ◽  
Vol 5 (9) ◽  
pp. 4292-4299 ◽  
Author(s):  
Tao Liu ◽  
Liping Yu ◽  
Hu Liu ◽  
Qinzhi Hou ◽  
Cheng Wang ◽  
...  

Free standing Ni nanobelts dispersed in HTMs were developed for high efficiency and ambient stable mesoscopic perovskite solar cells.


Nano Energy ◽  
2021 ◽  
Vol 82 ◽  
pp. 105712
Author(s):  
Sisi Wang ◽  
Zhipeng Zhang ◽  
Zikang Tang ◽  
Chenliang Su ◽  
Wei Huang ◽  
...  

2021 ◽  
pp. 2001466
Author(s):  
Yali Chen ◽  
Xuejiao Zuo ◽  
Yiyang He ◽  
Fang Qian ◽  
Shengnan Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document