scholarly journals Carbon tetrachloride (CCl4) accelerated development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH) in MS-NASH mice fed western diet supplemented with fructose (WDF)

2020 ◽  
Author(s):  
Guodong Zhang ◽  
Xiaoli Wang ◽  
Tzu-Yang Chung ◽  
Weiwei Ye ◽  
Lauren Hodge ◽  
...  

Abstract Background Multiple NAFLD/NASH murine models have been developed by obesogenic diets and/or chemical induction. MS-NASH (formally FATZO) mouse is a spontaneously developed dysmetabolic strain that can progress from hepatosteatosis to moderate fibrosis when fed western diet supplemented with 5% fructose (WDF). This study aimed to use carbon tetrachloride (CCl4) to accelerate and aggravate progression of NAFLD/NASH in MS-NASH mouse. Methods Male MS-NASH mice at 8 weeks of age were fed WDF for the entire study. Starting at 16 weeks of age, CCl4 was intraperitoneally administrated twice weekly at a dose of 0.2 mL/kg for 3 weeks or 0.08 mL/kg for 8 weeks. Obeticholic acid (OCA, 30 mg/kg, QD) was administered in both MS-NASH and C57Bl/6 mice fed WDF and treated with CCl4 (0.08 mL/kg). Results WDF enhanced obesity and hepatosteatosis, as well as induced moderate fibrosis in MS-NASH mice similar to that reported previously. Administration of CCl4 accelerated liver fibrosis with increased bridging, but no significant impact on liver steatosis and lipid contents. Compared to the high dose CCl4 at 0.2 mL/kg, the lower dose of 0.08 mL/kg caused less death and smaller elevation of ALT and AST. Compared to MS-NASH mice, C57BI/6 mice with WDF and CCl4 (0.08 mL/kg) resulted in milder hepatosteatosis and fibrosis. OCA treatment significantly lowered liver triglycerides, steatosis and fibrosis in both MS-NASH and C57Bl/6 mice treated with WDF and CCl4. Conclusions CCl4 reduced induction time and exacerbated the fibrosis in MS-NASH mice on WDF, which, thus, becomes a superior NASH model with more prominent liver pathology used favorably in pharmaceutical industry for testing novel therapeutics targeting NASH.

2020 ◽  
Author(s):  
Guodong Zhang ◽  
Xiaoli Wang ◽  
Tzu-Yang Chung ◽  
Weiwei Ye ◽  
Lauren Hodge ◽  
...  

Abstract Background: Multiple murine models of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) have been established by using obesogenic diets and/or chemical induction. MS-NASH mouse (formally FATZO) is a spontaneously developed dysmetabolic strain that can progress from hepatosteatosis to moderate fibrosis when fed a western diet supplemented with 5% fructose (WDF). This study aimed to use carbon tetrachloride (CCl4) to accelerate and aggravate progression of NAFLD/NASH in MS-NASH mouse. Methods: Male MS-NASH mice at 8 weeks of age were fed WDF for the entire study. Starting at 16 weeks of age, CCl4 was intraperitoneally administered twice weekly at a dose of 0.2 mL/kg for 3 weeks or 0.08 mL/kg for 8 weeks. Obeticholic acid (OCA, 30 mg/kg, QD) was administered in both MS-NASH and C57Bl/6 mice fed WDF and treated with CCl4 (0.08 mL/kg).Results: WDF enhanced obesity and hepatosteatosis, as well as induced moderate fibrosis in MS-NASH mice similar to previous reports. Administration of CCl4 accelerated liver fibrosis with increased bridging and liver hydroxyproline contents, but had no significant impact on liver steatosis and lipid contents. High dose CCl4 caused high mortality and dramatic elevation of ALT and ASL, while low dose CCl4 resulted in a moderate elevation of ALT and AST with low mortality. Compared to C57BI/6 mice with WDF and CCl4 (0.08 mL/kg), MS-NASH mice had more prominent hepatosteatosis and fibrosis. OCA treatment significantly lowered liver triglycerides, steatosis and fibrosis in both MS-NASH and C57Bl/6 mice fed WDF with CCl4 treatment. Conclusions: CCl4 reduced induction time and exacerbated liver fibrosis in MS-NASH mice on WDF, proving a superior NASH model with more prominent liver pathology, which has been used favorably in pharmaceutical industry for testing novel NASH therapeutics.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guodong Zhang ◽  
Xiaoli Wang ◽  
Tzu-Yang Chung ◽  
Weiwei Ye ◽  
Lauren Hodge ◽  
...  

Abstract Background Multiple murine models of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) have been established by using obesogenic diets and/or chemical induction. MS-NASH mouse (formally FATZO) is a spontaneously developed dysmetabolic strain that can progress from hepatosteatosis to moderate fibrosis when fed a western diet supplemented with 5% fructose (WDF). This study aimed to use carbon tetrachloride (CCl4) to accelerate and aggravate progression of NAFLD/NASH in MS-NASH mouse. Methods Male MS-NASH mice at 8 weeks of age were fed WDF for the entire study. Starting at 16 weeks of age, CCl4 was intraperitoneally administered twice weekly at a dose of 0.2 mL/kg for 3 weeks or 0.08 mL/kg for 8 weeks. Obeticholic acid (OCA, 30 mg/kg, QD) was administered in both MS-NASH and C57Bl/6 mice fed WDF and treated with CCl4 (0.08 mL/kg). Results WDF enhanced obesity and hepatosteatosis, as well as induced moderate fibrosis in MS-NASH mice similar to previous reports. Administration of CCl4 accelerated liver fibrosis with increased bridging and liver hydroxyproline contents, but had no significant impact on liver steatosis and lipid contents. High dose CCl4 caused high mortality and dramatic elevation of ALT and ASL, while low dose CCl4 resulted in a moderate elevation of ALT and AST with low mortality. Compared to C57BI/6 mice with WDF and CCl4 (0.08 mL/kg), MS-NASH mice had more prominent hepatosteatosis and fibrosis. OCA treatment significantly lowered liver triglycerides, steatosis and fibrosis in both MS-NASH and C57Bl/6 mice fed WDF with CCl4 treatment. Conclusions CCl4 reduced induction time and exacerbated liver fibrosis in MS-NASH mice on WDF, proving a superior NASH model with more prominent liver pathology, which has been used favorably in pharmaceutical industry for testing novel NASH therapeutics.


2016 ◽  
Vol 116 (2) ◽  
pp. 191-203 ◽  
Author(s):  
Prasanthi Jegatheesan ◽  
Stéphanie Beutheu ◽  
Kim Freese ◽  
Anne-Judith Waligora-Dupriet ◽  
Esther Nubret ◽  
...  

AbstractA Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague–Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (P<0·05) and Tnfα, and of toll-like receptor 4 (Tlr4) (P<0·05). Cit also improved plasma TAG and insulin levels. In the colon, it decreased inflammation (Tnfα and Tlr4 expressions) and increased claudin-1 protein expression. This was associated with higher levels of Bacteroides/Prevotella compared with rats fed the Western diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level.


2019 ◽  
Vol 17 (1) ◽  
pp. 1328-1338
Author(s):  
Yufeng Xing ◽  
Chuantao Zhang ◽  
Fenfen Zhai ◽  
Tianran Zhou ◽  
Xiang Cui ◽  
...  

AbstractCells with non-alcoholic fatty liver disease (NAFLD) were studied to determine the mechanism of liver deficiency via the AdipoR2-PPARa pathway. NAFLD cells were randomly divided into a normal control group, blank control group, model group, low dose group, medium dose group, and high dose group. The NAFLD models were established by incubating the cells with linoleic acid (LA) and palmitic acid (PA) (2:1) for 24 h. The test groups were incubated with different doses of Shugan Xiaozhi Fang extract. The pathological changes in cells that accumulated lipids were detected by Oil Red O staining. Malondialdehyde (MDA) and triglyceride (TG) levels were measured. The apoptosis of cells was evaluated by flow cytometry. The levels of AdipoR2, PPARa, CD36, acyl-CoA mRNA, and protein were confirmed by RT- PCR and Western blot. The results of the Oil Red O staining demonstrated that the NAFLD cell model was successfully established. Compared with the model group, the levels of TG and MDA in the groups that received low, medium, and high doses of Shugan Xiaozhi were significantly lower (P<0.01), and a dose effect was evident. In addition, the expression of AdipoR2, PPARa, CD36, acyl-CoA protein, and mRNA in the Shugan Xiaozhi-treated groups was upregulated. Furthermore, the levels of AdipoR2, PPAR, CD36, acyl-CoA protein, and mRNA in all drug treatment groups that were extracted from L-O2 normal human hepatocytes were significantly upregulated (P<0.01). Moreover, the factor pattern of HepG2 human liver carcinoma cells was similar to that of L-O2. The levels of AdipoR, CD36, acyl-CoA, and AdipoR mRNA in the HepG2 low group were increased (P<0.05). AdipoR, PPAR, CD36, and acyl-CoA protein levels and AdipoR mRNA expression were significantly increased in the intermediate dose group and high dose group (P<0.01). Shugan Xiaozhi Fang attenuates hepatic lipid deposition in NAFLD induced by incubating with LA and PA for 24 h, which is associated with the activation of the AdipoR2-PPARα pathway.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Toshifumi Yodoshi ◽  
Sarah Orkin ◽  
Andrew T. Trout ◽  
Ana Catalina Arce-Clachar ◽  
Kristin Bramlage ◽  
...  

2021 ◽  
pp. 1-25
Author(s):  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Wei-Yi Cheng ◽  
Hsin-Yi Yang

Abstract Dietary modification plays a vital role in the treatment of non-alcoholic liver diseases. We investigated the effects of the consumption of different amount of dehulled adlay, which has hypolipidemic and anti-inflammatory properties, on non-alcoholic fatty liver disease (NAFLD). We fed rats a high-fat-high-fructose liquid diet for 16 weeks to induce NAFLD. The rats were divided into three groups fed the NAFLD diet only (NN) or a diet containing 44.9 g/L or 89.8 g/L of dehulled adlay (group NA and NB, respectively). After 8 weeks, the NA & NB group had lower C-reactive protein levels and improvement in insulin resistance. In addition, the NB group had lower liver weight and hepatic triglyceride and cholesterol concentrations than did the NN group. Compared with the NN group, the high-dose NB group had improved steatosis, lower hepatic TNF-α, IL-1β and IL-6 levels, and lower adipose leptin levels. Our results suggest that a diet containing dehulled adlay can ameliorate NAFLD progression by decreasing of insulin resistance, steatosis and inflammation.


2020 ◽  
Vol 21 (9) ◽  
pp. 3308 ◽  
Author(s):  
Carla Cremonese ◽  
Robert Schierwagen ◽  
Frank Erhard Uschner ◽  
Sandra Torres ◽  
Olaf Tyc ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This study investigated the additional role of obesity in this model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis was assessed using standard techniques. Hepatic expression of transforming growth factor-β1 (TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed. Assessment of portal and systemic hemodynamics was performed using the colored microsphere technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1) mRNA expression levels. Of note, portal pressure increased with the duration of WD compared to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably due to a shift of the renin–angiotensin system towards a higher activation of the classical pathway. The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of fibrosis and portal hypertension in NAFLD with obesity.


Sign in / Sign up

Export Citation Format

Share Document