scholarly journals A Novel Investigation Into the Edge Effect Reduction of 4340 Steel Disc Through Induction Hardening Process Using Magnetic Flux Concentrators

Author(s):  
Mahyar Parvinzadeh ◽  
Sasan Sattarpanah Karganroudi ◽  
Narges Omidi ◽  
Noureddine Barka ◽  
Mohamed Khalifa

Abstract Induction hardening serves as one of the best mass production processes used recently due to its ability to quickly generating high-intensity heat in a well-defined location of the part. Numerous advantages of this method make it a reliable technique to produce a thin martensite layer on the part surface that has compressive residual stresses. In this regard, the presented study is devoted to investigating utilizing induction heating for surface hardening of AISI 4340 steel disc. The purpose is to evaluate the performance of magnetic flux concentrators and the effects of the induction process parameter on the case-depth and edge effect in the surface hardening of the disc. Once the proper range of parameters is defined, Taguchi experimentation planning is used to frame comprehensive experimentation with the minimum possible trial. Then, the case-depth of discs is evaluated on their cross-sections (edge and middle plane) through hardness profile measurement of samples using a micro-indentation hardness machine. The results are then statistically analyzed using Analysis of Variance (ANOVA) and Response Surface Methodology (RSM) to determine the best combination of parameters to achieve maximum case-depth yet minimum edge effect. The goodness-of-fit regression models are then developed to predict the case-depth profile as a function of machine parameters based on linear regression utilizing case-depth responses in the edge and middle plane of discs. Results imply that maximum case-depth with minimum edge effect can be produced by using the highest heating time along with the average amplitude of the power, axial gap, and radial gap. This study gives a good exploration of case-depths optimized by setting up process parameters when magnetic flux concentrator is utilized, thus, a guideline to reduce discs edge effect in induction surface hardening application is given.

2021 ◽  
Vol 113 (1-2) ◽  
pp. 605-619
Author(s):  
Mahyar Parvinzadeh ◽  
Sasan Sattarpanah Karganroudi ◽  
Narges Omidi ◽  
Noureddine Barka ◽  
Mohamed Khalifa

2021 ◽  
Vol 76 (3) ◽  
pp. 175-194
Author(s):  
A. Fischer ◽  
B. Scholtes ◽  
T. Niendorf

Abstract In order to improve properties of complex automotive components, such as crankshafts, in an application-oriented way, several surface hardening treatments can be applied. Concerning the material performance the definition of adequate process parameters influences the resulting surface properties and, thus, the effectiveness of surface hardening treatments. To analyze most relevant process-microstructure-property relationships, the present paper reports results obtained by two different well-established surface hardening procedures, i. e. deep rolling as a mechanical treatment and induction hardening as a thermal treatment. For each hardening process widely used crankshaft steel grades, i. e. a medium carbon 38MnSiVS5 microalloyed steel and a quenched and tempered 42CrMo4 were selected and thoroughly characterized upon processing, using equal parameter settings. The results reveal that deep rolling in contrast to induction hardening proves to be a less sensitive surface layer treatment with regard to small differences in the initial microstructure, the chemical composition and the applied process parameters. Differences in microstructure evolution with respect to the applied surface hardening treatment are studied and discussed for the highly stressed fillet region of automotive crankshaft sections for all conditions. In this context, high-resolution SEM-based techniques such as EBSD and ECCI are proven to be very effective for fast qualitative evaluation of induced microstructural changes.


Author(s):  
Rachid Fakir ◽  
Noureddine Barka ◽  
Jean Brousseau

This paper presents a numerical model able to control the temperature distribution along a 4340 steel cylinder heat-treated with Nd: YAG laser. The numerical model developed using the numerical finite element method, was based on a study of surface temperature variation and the adjustment of this temperature by a control of the heat treatment laser power. The proposed analytical approach was built gradually by (i) the development of a numerical model of laser heat treatment of the cylindrical workpiece, (ii) an analysis of the results of simulations and experimental tests, (iii) development of a laser power adjustment approach, and (iv) proposal of a laser power control predictor using neural networks. This approach was made possible by highlighting the influence of the fixed (non-variable) parameters of the laser heat treatment on the case depth, and has shown that it is possible by controlling the laser parameters to homogenize the distribution of the maximum temperature reached on the surface for a uniform case depth. The feasibility and effectiveness of the proposed approach leads to a reliable and accurate model able to guarantee a uniform surface temperature and a regular case depth for a cylindrical workpiece of a length of 50-mm and with a diameter of between 16-mm and 22-mm.


2013 ◽  
pp. 271-324

Abstract This chapter discusses the processes used in manufacturing to thermally alter the properties of metals and alloys. It begins with a review of the iron-carbon system, the factors that affect hardenability, and the use of continuous cooling transformation diagrams. It then explains how various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement and discusses the effect of precipitation hardening on aluminum and other alloys.


2014 ◽  
Vol 699 ◽  
pp. 105-110 ◽  
Author(s):  
Abdullah Wagiman ◽  
Md Saidin Wahab ◽  
Zazuli Mohid

Flame hardening has been traditionally used for selective surface hardening of steel. This technique frequently resulting in imprecise harden area and part distortion when overheated. Focused heating source such as plasma arc can be an alternative to overcome this problem. In this work, plasma arc is scanned at the 4340 steel surface to improve the hardness. The variable parameters investigated were at scanning speed and operating current. Four types of surfaces were observed after they are scanned with plasma arc. They are fully-melted, partially-melted, non-melted continuous and non-melted intermittent where each type of surface has different roughness value. This work found that scanning speed and operating current has significantly influence the type of surface and roughness values. Analysis on non-melted surface gives the maximum depth of hardened layer of about 187 μm as well as hardness values of about 990 HV50. It is also observed that the depth of hardened layer and hardness value is significantly decreasing with increase in scanning speed or the decrease in operating current. Microstructure examination on hardened layer revealed that the increase of hardness is due to formation of fine grain martensitie structure.


Author(s):  
Jerzy Barglik

Purpose – As far as the author knows the modeling of induction surface hardening is still a challenge. The purpose of this paper is to present both mathematical models of continuous and simultaneous hardening processes and exemplary results of computations and measurements. The upper critical temperature Ac3 is determined from the Time Temperature Austenization diagram for investigated steel. Design/methodology/approach – Computation of coupled electromagnetic, thermal and hardness fields is based on the finite element methods, while the hardness distribution is determined by means of experimental dependence derived from the continuous cooling temperature diagram for investigated steel. Findings – The presented results may be used as a theoretical background for design of inductor-sprayer systems in continual and simultaneous arrangements and a proper selection of their electromagnetic and thermal parameters. Research limitations/implications – The both models reached a quite good accuracy validated by the experiments. Next work in the field should be aimed at further improvement of numerical models in order to shorten the computation time. Practical implications – The results may be used for designing induction hardening systems and proper selection of field current and cooling parameters. Originality/value – Complete mathematical and numerical models for continuous and simultaneous surface induction hardening including dual frequency induction heating of gear wheels. Experimental validation of achieved results. Taking into account dependence of the upper critical temperature Ac3 on speed of heating.


Sign in / Sign up

Export Citation Format

Share Document