scholarly journals Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis

2020 ◽  
Author(s):  
Nan Dong ◽  
Julia Bandura ◽  
Zhaolei Zhang ◽  
Yan Wang ◽  
Karine Labadie ◽  
...  

Abstract Background. The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST library and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. Results. In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. Conclusions. Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.

2020 ◽  
Author(s):  
Nan Dong ◽  
Julia Bandura ◽  
Zhaolei Zhang ◽  
Yan Wang ◽  
Karine Labadie ◽  
...  

Abstract Background. The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST library and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. Results. In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. Conclusions. Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nancy Dong ◽  
Julia Bandura ◽  
Zhaolei Zhang ◽  
Yan Wang ◽  
Karine Labadie ◽  
...  

Abstract Background The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST libraries and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. Results In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. Conclusions Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.


2020 ◽  
Author(s):  
Nan Dong ◽  
Julia Bandura ◽  
Zhaolei Zhang ◽  
Yan Wang ◽  
Karine Labadie ◽  
...  

Abstract Background. The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its CNS. However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST library and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. Results. In this study, taking advantage of the recent availability of the L. stagnalis reference genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of mouse, zebrafish, Xenopus tropicalis, fruit fly, and C. elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. Conclusions. Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study is, to the best of our knowledge, the first to provide a complete characterization of the ion channels of a single species, opening new avenues for future research on fundamental neurobiological processes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3702 ◽  
Author(s):  
Santiago Montero-Mendieta ◽  
Manfred Grabherr ◽  
Henrik Lantz ◽  
Ignacio De la Riva ◽  
Jennifer A. Leonard ◽  
...  

Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembledde-novo. We used RNA-seq to obtain the transcriptomic profile forOreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome ofO. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating ade-novotranscriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to buildde-novotranscriptome assemblies using readily available software and is freely available at:https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009631
Author(s):  
Raquel Linheiro ◽  
John Archer

With the exponential growth of sequence information stored over the last decade, including that of de novo assembled contigs from RNA-Seq experiments, quantification of chimeric sequences has become essential when assembling read data. In transcriptomics, de novo assembled chimeras can closely resemble underlying transcripts, but patterns such as those seen between co-evolving sites, or mapped read counts, become obscured. We have created a de Bruijn based de novo assembler for RNA-Seq data that utilizes a classification system to describe the complexity of underlying graphs from which contigs are created. Each contig is labelled with one of three levels, indicating whether or not ambiguous paths exist. A by-product of this is information on the range of complexity of the underlying gene families present. As a demonstration of CStones ability to assemble high-quality contigs, and to label them in this manner, both simulated and real data were used. For simulated data, ten million read pairs were generated from cDNA libraries representing four species, Drosophila melanogaster, Panthera pardus, Rattus norvegicus and Serinus canaria. These were assembled using CStone, Trinity and rnaSPAdes; the latter two being high-quality, well established, de novo assembers. For real data, two RNA-Seq datasets, each consisting of ≈30 million read pairs, representing two adult D. melanogaster whole-body samples were used. The contigs that CStone produced were comparable in quality to those of Trinity and rnaSPAdes in terms of length, sequence identity of aligned regions and the range of cDNA transcripts represented, whilst providing additional information on chimerism. Here we describe the details of CStones assembly and classification process, and propose that similar classification systems can be incorporated into other de novo assembly tools. Within a related side study, we explore the effects that chimera’s within reference sets have on the identification of differentially expression genes. CStone is available at: https://sourceforge.net/projects/cstone/.


2020 ◽  
Author(s):  
Maxim Ivanov ◽  
Albin Sandelin ◽  
Sebastian Marquardt

Abstract Background: The quality of gene annotation determines the interpretation of results obtained in transcriptomic studies. The growing number of genome sequence information calls for experimental and computational pipelines for de novo transcriptome annotation. Ideally, gene and transcript models should be called from a limited set of key experimental data. Results: We developed TranscriptomeReconstructoR, an R package which implements a pipeline for automated transcriptome annotation. It relies on integrating features from independent and complementary datasets: i) full-length RNA-seq for detection of splicing patterns and ii) high-throughput 5' and 3' tag sequencing data for accurate definition of gene borders. The pipeline can also take a nascent RNA-seq dataset to supplement the called gene model with transient transcripts.We reconstructed de novo the transcriptional landscape of wild type Arabidopsis thaliana seedlings as a proof-of-principle. A comparison to the existing transcriptome annotations revealed that our gene model is more accurate and comprehensive than the two most commonly used community gene models, TAIR10 and Araport11. In particular, we identify thousands of transient transcripts missing from the existing annotations. Our new annotation promises to improve the quality of A.thaliana genome research.Conclusions: Our proof-of-concept data suggest a cost-efficient strategy for rapid and accurate annotation of complex eukaryotic transcriptomes. We combine the choice of library preparation methods and sequencing platforms with the dedicated computational pipeline implemented in the TranscriptomeReconstructoR package. The pipeline only requires prior knowledge on the reference genomic DNA sequence, but not the transcriptome. The package seamlessly integrates with Bioconductor packages for downstream analysis.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yannick Cogne ◽  
Davide Degli-Esposti ◽  
Olivier Pible ◽  
Duarte Gouveia ◽  
Adeline François ◽  
...  

Abstract Gammarids are amphipods found worldwide distributed in fresh and marine waters. They play an important role in aquatic ecosystems and are well established sentinel species in ecotoxicology. In this study, we sequenced the transcriptomes of a male individual and a female individual for seven different taxonomic groups belonging to the two genera Gammarus and Echinogammarus: Gammarus fossarum A, G. fossarum B, G. fossarum C, Gammarus wautieri, Gammarus pulex, Echinogammarus berilloni, and Echinogammarus marinus. These taxa were chosen to explore the molecular diversity of transcribed genes of genotyped individuals from these groups. Transcriptomes were de novo assembled and annotated. High-quality assembly was confirmed by BUSCO comparison against the Arthropod dataset. The 14 RNA-Seq-derived protein sequence databases proposed here will be a significant resource for proteogenomics studies of these ecotoxicologically relevant non-model organisms. These transcriptomes represent reliable reference sequences for whole-transcriptome and proteome studies on other gammarids, for primer design to clone specific genes or monitor their specific expression, and for analyses of molecular differences between gammarid species.


2018 ◽  
Author(s):  
Elena Bushmanova ◽  
Dmitry Antipov ◽  
Alla Lapidus ◽  
Andrey D. Prjibelski

AbstractSummaryPossibility to generate large RNA-seq datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the model organisms with finished and annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing and paralogous genes. In this paper we describe a novel transcriptome assembler called rnaSPAdes, which is developed on top of SPAdes genome assembler and explores surprising computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-Seq datasets, and briefly highlight strong and weak points of different assemblers.Availability and implementationrnaSPAdes is implemented in C++ and Python and is freely available at cab.spbu.ru/software/rnaspades/.


2020 ◽  
Author(s):  
Michal Levin ◽  
Marion Scheibe ◽  
Falk Butter

Abstract BackgroundThe process of identifying all coding regions in a genome is crucial for any study at the level of molecular biology, ranging from single-gene cloning to genome-wide measurements using RNA-Seq or mass spectrometry. While satisfactory annotation has been made feasible for well-studied model organisms through great efforts of big consortia, for most systems this kind of data is either absent or not adequately precise. ResultsCombining in-depth transcriptome sequencing and high resolution mass spectrometry, we here use proteotranscriptomics to improve gene annotation of protein-coding genes in the Bombyx mori cell line BmN4 which is an increasingly used tool for the analysis of piRNA biogenesis and function. Using this approach we provide the exact coding sequence and evidence for more than 6,200 genes on the protein level. Furthermore using spatial proteomics, we establish the subcellular localization of thousands of these proteins. We show that our approach outperforms current Bombyx mori annotation attempts in terms of accuracy and coverage. ConclusionsWe show that proteotranscriptomics is an efficient, cost-effective and accurate approach to improve previous annotations or generate new gene models. As this technique is based on de-novo transcriptome assembly, it provides the possibility to study any species also in the absence of genome sequence information for which proteogenomics would be impossible.


2021 ◽  
Author(s):  
Sarah Wooller ◽  
Aikaterini Anagnostopoulou ◽  
Benno Kuropka ◽  
Michael Crossley ◽  
Paul R. Benjamin ◽  
...  

Applications of key technologies in bioscientific and biomedical research, such as qRT-PCR or LC-MS based proteomics, are generating large biological data sets (omics data) which are useful for the identification and quantification of biomarkers involved in molecular mechanisms of any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of learning and memory, ageing and age-related as well as amyloid beta induced memory decline. Here, we present the design and benchmarking of a new proteomics database (LymSt-PDB) for the identification of proteins from the Central Nervous System (CNS) of Lymnaea stagnalis by LC-MS based proteomics.


Sign in / Sign up

Export Citation Format

Share Document