scholarly journals Validation of Coronal Mass Ejection Arrival-Time Forecasts by Magnetohydrodynamic Simulations based on Interplanetary Scintillation Observations

2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.

2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrivaltime is very important.However,forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrivaltimesat the Earth forecasted by three-dimensional(3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromakswith various initial speeds. TenMHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University.The CME arrivaltime of the simulation run that most closelyagrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of theIPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereasthat of MHD simulations without IPS data, in which the initial CME speed isderived from white-light coronagraph images, is approximately6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrivaltimes are earlier than the actual arrival times. These early predictions may be duetooverestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken’ichi Fujiki ◽  
Mitsue Den ◽  
...  

AbstractCoronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validated the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


2020 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken'ichi Fujiki ◽  
Mitsue Den ◽  
...  

Abstract Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.


2021 ◽  
Author(s):  
Kazumasa Iwai ◽  
Daikou Shiota ◽  
Munetoshi Tokumaru ◽  
Ken’ichi Fujiki ◽  
Mitsue Den ◽  
...  

<p>Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study developed a CME arrival-time forecasting system using a three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. The base MHD simulation is SUSANO-CME (Shiota and Kataoka 2016), in which CMEs are approximated as spheromaks. In the developed forecasting system, many MHD simulations with different CME initial speed are tested. The IPS responses of each MHD simulation run is calculated from the density distributions derived from the MHD simulation, and compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is automatically selected as the forecasted time.</p><p>We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.</p>


2018 ◽  
Vol 8 ◽  
pp. A39 ◽  
Author(s):  
Jingjing Wang ◽  
Xianzhi Ao ◽  
Yuming Wang ◽  
Chuanbing Wang ◽  
Yanxia Cai ◽  
...  

We present in this paper an operational solar wind prediction system. The system is an outcome of the collaborative efforts between scientists in research communities and forecasters at Space Environment Prediction Center (SEPC) in China. This system is mainly composed of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection (CME) detection module, which derives CME parameters using the ice-cream cone model based on coronagraph images. By bridging the gap between fundamental science and operational requirements, our system is finally capable of predicting solar wind conditions near Earth, especially the arrival times of the co-rotating interaction regions (CIRs) and CMEs. Our test against historical solar wind data from 2007 to 2016 shows that the hit rate (HR) of the high-speed enhancements (HSEs) is 0.60 and the false alarm rate (FAR) is 0.30. The mean error (ME) and the mean absolute error (MAE) of the maximum speed for the same period are −73.9 km s−1 and 101.2 km s−1, respectively. Meanwhile, the ME and MAE of the arrival time of the maximum speed are 0.15 days and 1.27 days, respectively. There are 25 CMEs simulated and the MAE of the arrival time is 18.0 h.


2006 ◽  
Vol 2 (S235) ◽  
pp. 189-189
Author(s):  
N. Asai ◽  
N. Fukuda ◽  
R. Matsumoto

AbstractWe carried out 3D magnetohydrodynamic simulations of a subcluster moving in turbulent ICM by including anisotropic heat conduction. Since magnetic fields stretched along the subcluster surface suppress the heat conduction across the front, cold fronts are formed and sustained.


2009 ◽  
Vol 27 (12) ◽  
pp. 4479-4489 ◽  
Author(s):  
M. M. Bisi ◽  
B. V. Jackson ◽  
J. M. Clover ◽  
P. K. Manoharan ◽  
M. Tokumaru ◽  
...  

Abstract. Interplanetary scintillation (IPS) remote-sensing observations provide a view of the solar wind covering a wide range of heliographic latitudes and heliocentric distances from the Sun between ~0.1 AU and 3.0 AU. Such observations are used to study the development of solar coronal transients and the solar wind while propagating out through interplanetary space. They can also be used to measure the inner-heliospheric response to the passage of coronal mass ejections (CMEs) and co-rotating heliospheric structures. IPS observations can, in general, provide a speed estimate of the heliospheric material crossing the observing line of site; some radio antennas/arrays can also provide a radio scintillation level. We use a three-dimensional (3-D) reconstruction technique which obtains perspective views from outward-flowing solar wind and co-rotating structure as observed from Earth by iteratively fitting a kinematic solar wind model to these data. Using this 3-D modelling technique, we are able to reconstruct the velocity and density of CMEs as they travel through interplanetary space. For the time-dependent model used here with IPS data taken from the Ootacamund (Ooty) Radio Telescope (ORT) in India, the digital resolution of the tomography is 10° by 10° in both latitude and longitude with a half-day time cadence. Typically however, the resolutions range from 10° to 20° in latitude and longitude, with a half- to one-day time cadence for IPS data dependant upon how much data are used as input to the tomography. We compare reconstructed structures during early-November 2004 with in-situ measurements from the Wind spacecraft orbiting the Sun-Earth L1-Point to validate the 3-D tomographic reconstruction results and comment on how these improve upon prior reconstructions.


2012 ◽  
Vol 8 (S294) ◽  
pp. 487-488
Author(s):  
Li-Jia Liu ◽  
Bo Peng

AbstractThe Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.


2021 ◽  
Author(s):  
Emiliya Yordanova ◽  
Mateja Dumbovic ◽  
Manuela Temmer ◽  
Camilla Scolini ◽  
Jasmina Magdalenic ◽  
...  

<p>Halo coronal mass ejections (CMEs) are one of the most effective drivers of intense geomagnetic storms. Despite the recent advances in space weather forecasting, the accurate arrival prediction of halo CMEs remains a challenge.  This is because in general CMEs interact with the background solar wind during their propagation in the interplanetary space. In addition, in the case of halo CMEs, the accurate estimation of their kinematics is difficult due to projection effects in the plane-of-sky.</p><p>In this study, we are revisiting the arrival of twelve geoeffective Earth-directed fast halo CMEs using an empirical and a numerical approaches. For this purpose we refine the input to the Drag-based Model (DBM) and to the EUropean Heliospheric Forecasting Information Asset (EUHFORIA), which are recently available for users from the ESA Space Situational Awareness Portal (http://swe.ssa.esa.int).</p><p>The DBM model has been tested using different values for the input drag parameter.  On average, the predicted arrival times are confined in the range of ± 10 h. The closest arrival to the observed one has been achieved with a drag value higher than the recommended for fast CMEs. Setting a higher drag also helped to obtain a closer to the observed CME arrival speed prediction. These results suggest that the exerted solar wind drag was higher than expected. Further, we are searching for clues about the CME propagation by performing EUHFORIA runs using the same CME kinematics. Preliminary results show that both models perform poorly for CMEs that have possibly undergone CME-CME interaction, underlying again the importance of taking into account the state of the interplanetary space in the CME forecast.</p>


Sign in / Sign up

Export Citation Format

Share Document