scholarly journals Opposition-Based Multi-Objective Whale Optimization Algorithm with Multi-Leader Guiding

Author(s):  
Yang Li ◽  
Wei-gang Li ◽  
Yun-tao Zhao ◽  
Ao Liu

Abstract Over the years, heuristic algorithms have been widely studied, especially in multi-objective optimization problems (MOPs). The multi-objective whale optimization algorithm based on multi-leader guiding (MOWOAMLG) is proposed in this paper, which is the multi-objective version of whale optimization algorithm (WOA). The proposed algorithm adopts several improvements to enhance optimization performance. First, multiple leadership solutions guide the population to search the sparse space to achieve more homogeneous exploration in per iteration, and the leadership solutions are selected on the Pareto front by grid mechanism and the principle of maximum crowding distance. Second, the differential evolution (DE) is employed to generate the offspring for the leadership solutions, while WOA is employed for the ordinary solutions. In addition, a novel opposition-based learning (OBL) strategy is developed to improve the distribution of the initial population. To show the significance of the proposed algorithm, it is tested on the 20 bi-objective and tri-objective unconstrained benchmark problems of varying nature and complexities. The result of numerical experiments shows that the proposed algorithm has competitive advantages in convergence and distribution while compared with other 10 classic or state-of-the-arts algorithms. The convergence curve of IGD indicates that MOWOAMLG is able to obtain good Pareto front in cost of fewer optimization iterations. Moreover, it is tested on load distribution of hot rolling, and the result proves its good performance in real-world applications. Thus, all of the aforementioned results have indicated that MOWOAMLG is comparatively effective and efficient to solve MOPs.

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2975
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Shokooh Taghian ◽  
Seyedali Mirjalili ◽  
Laith Abualigah ◽  
Mohamed Abd Abd Elaziz ◽  
...  

The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gui-Ying Ning ◽  
Dun-Qian Cao

In view of the shortcomings of the whale optimization algorithm (WOA), such as slow convergence speed, low accuracy, and easy to fall into local optimum, an improved whale optimization algorithm (IWOA) is proposed. First, the standard WOA is improved from the three aspects of initial population, convergence factor, and mutation operation. At the same time, Gaussian mutation is introduced. Then the nonfixed penalty function method is used to transform the constrained problem into an unconstrained problem. Finally, 13 benchmark problems were used to test the feasibility and effectiveness of the proposed method. Numerical results show that the proposed IWOA has obvious advantages such as stronger global search ability, better stability, faster convergence speed, and higher convergence accuracy; it can be used to effectively solve complex constrained optimization problems.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document