Computational drug repositioning based on multi-similarities bilinear matrix factorization

Author(s):  
Mengyun Yang ◽  
Gaoyan Wu ◽  
Qichang Zhao ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug–drug similarities can be measured from target profiles, drug–drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug–disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug–disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug–disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: [email protected] Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Yang ◽  
Linai Kuang ◽  
Zhiping Chen ◽  
Lei Wang

Accumulating studies have shown that microbes are closely related to human diseases. In this paper, a novel method called MSBMFHMDA was designed to predict potential microbe–disease associations by adopting multi-similarities bilinear matrix factorization. In MSBMFHMDA, a microbe multiple similarities matrix was constructed first based on the Gaussian interaction profile kernel similarity and cosine similarity for microbes. Then, we use the Gaussian interaction profile kernel similarity, cosine similarity, and symptom similarity for diseases to compose the disease multiple similarities matrix. Finally, we integrate these two similarity matrices and the microbe-disease association matrix into our model to predict potential associations. The results indicate that our method can achieve reliable AUCs of 0.9186 and 0.9043 ± 0.0048 in the framework of leave-one-out cross validation (LOOCV) and fivefold cross validation, respectively. What is more, experimental results indicated that there are 10, 10, and 8 out of the top 10 related microbes for asthma, inflammatory bowel disease, and type 2 diabetes mellitus, respectively, which were confirmed by experiments and literatures. Therefore, our model has favorable performance in predicting potential microbe–disease associations.


2021 ◽  
Author(s):  
Guobo Xie ◽  
Jianming Li ◽  
Guosheng Gu ◽  
Yuping Sun ◽  
Zhiyi Lin ◽  
...  

Drug repositioning, a method that relies on the information from the original drug-disease association matrix, aims to identify new indications for existing drugs and will greatly reduce the cost and...


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 608 ◽  
Author(s):  
Yan Li ◽  
Junyi Li ◽  
Naizheng Bian

Identifying associations between lncRNAs and diseases can help understand disease-related lncRNAs and facilitate disease diagnosis and treatment. The dual-network integrated logistic matrix factorization (DNILMF) model has been used for drug–target interaction prediction, and good results have been achieved. We firstly applied DNILMF to lncRNA–disease association prediction (DNILMF-LDA). We combined different similarity kernel matrices of lncRNAs and diseases by using nonlinear fusion to extract the most important information in fused matrices. Then, lncRNA–disease association networks and similarity networks were built simultaneously. Finally, the Gaussian process mutual information (GP-MI) algorithm of Bayesian optimization was adopted to optimize the model parameters. The 10-fold cross-validation result showed that the area under receiving operating characteristic (ROC) curve (AUC) value of DNILMF-LDA was 0.9202, and the area under precision-recall (PR) curve (AUPR) was 0.5610. Compared with LRLSLDA, SIMCLDA, BiwalkLDA, and TPGLDA, the AUC value of our method increased by 38.81%, 13.07%, 8.35%, and 6.75%, respectively. The AUPR value of our method increased by 52.66%, 40.05%, 37.01%, and 44.25%. These results indicate that DNILMF-LDA is an effective method for predicting the associations between lncRNAs and diseases.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhen Shen ◽  
You-Hua Zhang ◽  
Kyungsook Han ◽  
Asoke K. Nandi ◽  
Barry Honig ◽  
...  

As one of the factors in the noncoding RNA family, microRNAs (miRNAs) are involved in the development and progression of various complex diseases. Experimental identification of miRNA-disease association is expensive and time-consuming. Therefore, it is necessary to design efficient algorithms to identify novel miRNA-disease association. In this paper, we developed the computational method of Collaborative Matrix Factorization for miRNA-Disease Association prediction (CMFMDA) to identify potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, and experimentally verified miRNA-disease associations. Experiments verified that CMFMDA achieves intended purpose and application values with its short consuming-time and high prediction accuracy. In addition, we used CMFMDA on Esophageal Neoplasms and Kidney Neoplasms to reveal their potential related miRNAs. As a result, 84% and 82% of top 50 predicted miRNA-disease pairs for these two diseases were confirmed by experiment. Not only this, but also CMFMDA could be applied to new diseases and new miRNAs without any known associations, which overcome the defects of many previous computational methods.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2776
Author(s):  
Xiguang Qi ◽  
Mingzhe Shen ◽  
Peihao Fan ◽  
Xiaojiang Guo ◽  
Tianqi Wang ◽  
...  

A gene expression signature (GES) is a group of genes that shows a unique expression profile as a result of perturbations by drugs, genetic modification or diseases on the transcriptional machinery. The comparisons between GES profiles have been used to investigate the relationships between drugs, their targets and diseases with quite a few successful cases reported. Especially in the study of GES-guided drugs–disease associations, researchers believe that if a GES induced by a drug is opposite to a GES induced by a disease, the drug may have potential as a treatment of that disease. In this study, we data-mined the crowd extracted expression of differential signatures (CREEDS) database to evaluate the similarity between GES profiles from drugs and their indicated diseases. Our study aims to explore the application domains of GES-guided drug–disease associations through the analysis of the similarity of GES profiles on known pairs of drug–disease associations, thereby identifying subgroups of drugs/diseases that are suitable for GES-guided drug repositioning approaches. Our results supported our hypothesis that the GES-guided drug–disease association method is better suited for some subgroups or pathways such as drugs and diseases associated with the immune system, diseases of the nervous system, non-chemotherapy drugs or the mTOR signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Leon Wong ◽  
Ping Zhang ◽  
Hao-Yuan Li ◽  
...  

Drug repositioning is an application-based solution based on mining existing drugs to find new targets, quickly discovering new drug-disease associations, and reducing the risk of drug discovery in traditional medicine and biology. Therefore, it is of great significance to design a computational model with high efficiency and accuracy. In this paper, we propose a novel computational method MGRL to predict drug-disease associations based on multi-graph representation learning. More specifically, MGRL first uses the graph convolution network to learn the graph representation of drugs and diseases from their self-attributes. Then, the graph embedding algorithm is used to represent the relationships between drugs and diseases. Finally, the two kinds of graph representation learning features were put into the random forest classifier for training. To the best of our knowledge, this is the first work to construct a multi-graph to extract the characteristics of drugs and diseases to predict drug-disease associations. The experiments show that the MGRL can achieve a higher AUC of 0.8506 based on five-fold cross-validation, which is significantly better than other existing methods. Case study results show the reliability of the proposed method, which is of great significance for practical applications.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S10) ◽  
Author(s):  
Huiran Li ◽  
Yin Guo ◽  
Menglan Cai ◽  
Limin Li

Abstract Background Biological evidence has shown that microRNAs(miRNAs) are greatly implicated in various biological progresses involved in human diseases. The identification of miRNA-disease associations(MDAs) is beneficial to disease diagnosis as well as treatment. Due to the high costs of biological experiments, it attracts more and more attention to predict MDAs by computational approaches. Results In this work, we propose a novel model MTFMDA for miRNA-disease association prediction by matrix tri-factorization, based on the known miRNA-disease associations, two types of miRNA similarities, and two types of disease similarities. The main idea of MTFMDA is to factorize the miRNA-disease association matrix to three matrices, a feature matrix for miRNAs, a feature matrix for diseases, and a low-rank relationship matrix. Our model incorporates the Laplacian regularizers which force the feature matrices to preserve the similarities of miRNAs or diseases. A novel algorithm is proposed to solve the optimization problem. Conclusions We evaluate our model by 5-fold cross validation by using known MDAs from HMDD V2.0 and show that our model could obtain the significantly highest AUCs among all the state-of-art methods. We further validate our method by applying it on colon and breast neoplasms in two different types of experiment settings. The new identified associated miRNAs for the two diseases could be verified by two other databases including dbDEMC and HMDD V3.0, which further shows the power of our proposed method.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background MicroRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the fivefold cross-validation, with an AUC of 0.9569 (0.0005). Conclusions The AUC value of MCCMF is higher than other advanced methods in the fivefold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hailin Chen ◽  
Zuping Zhang

Increasing evidence discovered that the inappropriate expression of microRNAs (miRNAs) will lead to many kinds of complex diseases and drugs can regulate the expression level of miRNAs. Therefore human diseases may be treated by targeting some specific miRNAs with drugs, which provides a new perspective for drug repositioning. However, few studies have attempted to computationally predict associations between drugs and diseases via miRNAs for drug repositioning. In this paper, we developed an inference model to achieve this aim by combining experimentally supported drug-miRNA associations and miRNA-disease associations with the assumption that drugs will form associations with diseases when they share some significant miRNA partners. Experimental results showed excellent performance of our model. Case studies demonstrated that some of the strongly predicted drug-disease associations can be confirmed by the publicly accessible database CTD (www.ctdbase.org), which indicated the usefulness of our inference model. Moreover, candidate miRNAs as molecular hypotheses underpinning the associations were listed to guide future experiments. The predicted results were released for further studies. We expect that this study will provide help in our understanding of drug-disease association prediction and in the roles of miRNAs in drug repositioning.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianlin Wang ◽  
Wenxiu Wang ◽  
Chaokun Yan ◽  
Junwei Luo ◽  
Ge Zhang

Drug repositioning is used to find new uses for existing drugs, effectively shortening the drug research and development cycle and reducing costs and risks. A new model of drug repositioning based on ensemble learning is proposed. This work develops a novel computational drug repositioning approach called CMAF to discover potential drug-disease associations. First, for new drugs and diseases or unknown drug-disease pairs, based on their known neighbor information, an association probability can be obtained by implementing the weighted K nearest known neighbors (WKNKN) method and improving the drug-disease association information. Then, a new drug similarity network and new disease similarity network can be constructed. Three prediction models are applied and ensembled to enable the final association of drug-disease pairs based on improved drug-disease association information and the constructed similarity network. The experimental results demonstrate that the developed approach outperforms recent state-of-the-art prediction models. Case studies further confirm the predictive ability of the proposed method. Our proposed method can effectively improve the prediction results.


Sign in / Sign up

Export Citation Format

Share Document