scholarly journals TRIM16 Positively Regulates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating the Ubiquitination and Degradation of RUNX2

2020 ◽  
Author(s):  
Yi Zhao ◽  
Qiaoli Zhai ◽  
Hong Liu ◽  
Xun Xi ◽  
Shuai Chen ◽  
...  

Abstract BackgroundPeriodontal disease is a common disease that compromises the integrity of tooth-supporting tissues. Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16 is downregulated in periodontal tissues of patients with periodontitis and involved in osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs).However, the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown.MethodshPDLSCs were isolated and identified by immunophenotype assays using flow cytometry. Overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS) and enzyme‐linked immunosorbent assays (ELISA) were used to evaluate osteogenic potential capacity. Reverse transcription quantitative PCR (RT-qPCR) and Western blot analysis were performed to determine the expression of osteogenic-related markers and activation of relevant signaling pathways. Co-immunoprecipitation assays were performed to confirm the interactions between proteins and the ubiquitination of RUNX2. A LC-MS/MS analysis was performed to explore the different expression proteins in present of TRIM16.ResultsTRIM16 significantly promoted alkaline phosphatase activity and mineralized nodule formation, and positively regulated the osteogenic differentiation of hPDLSCs by enhancing protein expression of RUNX2, COL1A1 and OCN. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. Besides, TRIM16 significantly increased expression of COL1A1 via activation of p38MAPK/RUNX2.ConclusionThis study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which may promote the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Meng ◽  
Ying Zhou ◽  
Jingkun Li ◽  
Meilin Hu ◽  
Xiaomeng Li ◽  
...  

Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.


Author(s):  
Yi Zhao ◽  
Qiaoli Zhai ◽  
Hong Liu ◽  
Xun Xi ◽  
Shuai Chen ◽  
...  

Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16, an E3 ubiquitin ligase, is downregulated in periodontal tissues of patients with periodontitis, while the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown. Firstly, we found that TRIM16 was increased throughout the osteogenic media induced differentiation of hPDLSCs. Then overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. TRIM16 significantly promoted alkaline phosphatase activity, mineralized nodule formation, and positively regulated the expression of osteo-specific markers RUNX2, COL1A1 and OCN except the mRNA of RUNX2. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. This study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which promoted the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.


2019 ◽  
Vol 48 (4) ◽  
pp. 030006051985164
Author(s):  
Jun Li ◽  
Youjian Peng

Objective To investigate the effects of the flavonoid, puerarin, on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs). Methods Human PDLSCs were isolated from patients undergoing orthodontic treatment, and the cell surface markers CD146, CD34, CD45, and STRO-1 were identified by immunofluorescence. Cell proliferation was detected by MTT assay; alkaline phosphatase (ALP) activity was measured, and calcium deposition was detected by alizarin red staining. PCR was then used to detect the distributions of COL-I, OPN, Runx2, and OCN, genes related to osteogenic differentiation. Results Staining was positive for cytokines CD146, CD34, CD45, and STRO-1 in the experimental group; staining was also positive for silk protein, but negative for keratin. After 7 days of culture, exposure to puerarin significantly promoted the level of intracellular ALP; increased puerarin concentration led to increased intracellular ALP. Red mineralized nodules appeared upon exposure to puerarin and the number of nodules was concentration-dependent. PCR analysis revealed that COL-I, OPN, Runx2, and OCN expression levels increased as puerarin concentration increased. Conclusions Exposure to puerarin can promote proliferation and ALP activity in human PDLSCs, thus promoting both molecular and osteogenic differentiation; these findings may provide a theoretical basis for the clinical treatment of periodontal disease with puerarin.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lin Fu ◽  
Na Li ◽  
Yu Ye ◽  
Xiaying Ye ◽  
Tong Xiao ◽  
...  

Let-7 miRNA family has been proved as a key regulator of mesenchymal stem cells’ (MSCs’) biological features. However, whether let-7b could affect the differentiation or proliferation of periodontal ligament stem cells (PDLSCs) is still unknown. Here, we found that the expression of hsa-let-7b was visibly downregulated after mineralization induction of PDLSCs. After transfected with hsa-let-7b mimics or inhibitor reagent, the proliferation ability of PDLSCs was detected by cell counting kit-8 (CCK-8), flow cytometry, and 5-ethynyl-2-deoxyuridine (EdU) assay. On the other hand, the osteogenic differentiation capacity was detected by alkaline phosphatase (ALP) staining and activity, alizarin red staining, Western blot, and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). We verified that hsa-let-7b did not significantly impact the proliferation ability of PDLSCs, but it could curb the osteogenic differentiation of PDLSCs. Besides, we predicted CTHRC1 acts as the downstream gene of hsa-let-7b to affect this process. Moreover, the combination of CTHRC1 and hsa-let-7b was verified by dual luciferase reporter assay. Our results demonstrated that the osteogenic differentiation of PDLSCs was enhanced after inhibiting hsa-let-7b, while was weakened after cotransfection with Si-CTHRC1. Collectively, hsa-let-7b can repress the osteogenic differentiation of PDLSCs by regulating CTHRC1.


2020 ◽  
Vol 245 (6) ◽  
pp. 552-561 ◽  
Author(s):  
Bin Zhao ◽  
Yixuan Xiong ◽  
Yunpeng Zhang ◽  
Linglu Jia ◽  
Wenjing Zhang ◽  
...  

Rutin is one of the flavonoids found in fruits and vegetables. Recent reports have revealed that rutin is a major player in proliferation and bone development. However, data on how rutin regulates the proliferation of periodontal ligament stem cells (PDLSCs), as well as the differentiation of osteogenic cells are scanty. Here, our findings showed that rutin enhanced PDLSCs proliferation, increased ALP activity, and matrix mineralization. Moreover, rutin significantly promoted the expression of osteogenic genes and elevated phosphorylated AKT and mTOR. Treatment with LY294002 reversed these effects by inhibiting PI3K. We also found that the expression levels of GPR30 were increased by rutin. Interestingly, this upregulation was not altered after the addition of LY294002. In addition, G15, a selective antagonist of GPR30, could reduce the beneficial effects induced by rutin and interfere with the modulation of PI3K/AKT/mTOR signal transduction. Collectively, our findings revealed that rutin increased proliferation and osteogenic differentiation of PDLSCs through GPR30-mediated PI3K/AKT/mTOR signal transduction. Therefore, it could be deduced that rutin as a certain flavonoid possesses therapeutic value for periodontal bone regeneration and tissue engineering. Impact statement In our study, the effects and mechanisms of rutin on the osteogenic differentiation and proliferation of PDLSCs were investigated. Our findings might provide basic knowledge and guidance to understand and use rutin in the bioengineering of the periodontal tissues and regeneration of bones. The following is a short description of the main findings: rutin promotes the osteogenic differentiation and proliferation of PDLSCs; PI3K/AKT/mTOR signal pathway mediates the effects of rutin on PDLSCs; rutin activates PI3K/AKT/mTOR signal pathway via GPR30.


Author(s):  
Giulia Tetè ◽  
Paolo Capparè ◽  
Enrico Gherlone

Objective: HiPS stem cells are commonly used for the study of medical disorders. The laboratory in which this study was conducted uses these cells for examining the treatment and cure of neurodegenerative diseases. Bone regeneration poses the greatest challenge for an oral surgeon both in terms of increased implant osseointegration and reducing bone healing times. The aim of this study was to validate the protocol in the literature to produce and then test in vitro osteoblasts with different nanomaterials to simulate bone regeneration. Method: hiPS clones (#2, #4, and #8) were differentiated into an osteoblast cell culture tested for alizarin red staining and for alkaline phosphatase testing at 14, 21 and 28 days, after the cells were plated. Results: The cells showed diffuse positivity under alizarin red staining and the alkaline phosphatase (ALP)-test, showing small formations of calcium clusters. Conclusion: Despite the limitations of our study, it is a starting point for further protocols, laying a solid foundation for research in the field of bone regeneration through the use of stem cells.


2019 ◽  
Author(s):  
Zhuo Wang ◽  
Yuanliang Huang ◽  
Luanjun Tan

Abstract Backgrounds: Long non-coding RNAs (lncRNAs) have been widely known to have an appreciable effect in physiology and pathology. In tooth regeneration, periodontal ligament stem cells (PDLSCs) are regarded as a key effector, whereas, how lncRNA acts in the osteogenic differentiation of PDLSCs have not been completely understood. This study aims to find out the relationship between lncRNA DANCR and the proliferation and osteogenic differentiation of PDLSCs. Method: Microarray was used to observe the different expression of lncRNAs in differentiated and undifferentiated PDLSCs. And then osteogenic-related lncRNA, DNACR was screened out. To explore its effects on proliferation and osteogenic differentiation by constructing an overexpression and inhibition model. qRT-PCR was used to detect the mRNA expression of osteogenesis related genes. MTT assay was performed to assess the effects of DNACR on cell growth curve. To quantify the effects of DNACR on osteogenic differentiation of PDLCs, ALP staining and alizarin red was performed in basic culture medium and osteogenic medium. Data were statistically processed. Results: Compared with the undifferentiated PDLSCs, the alizarin red staining level was higher in differentiated PDLSCs. And the expressions of osteogenic differentiation marker genes Runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and bone morphogenetic protein (BMP-2) were significantly increased in the differentiated PDLSCs. Furthermore, we noticed that comparing with control groups, the expression of LncRNA DANCR decreases markedly in osteogenically induced PDLSCs. DANCR promoted proliferation of PDLSCs, as evidenced by cell viability. Further investigation has proven that the downregulation of DANCR shows in the calcium sediment forming, alkaline phosphatase (ALP) activation and some osteogenic-related gene markers’ upregulation including Runx2, OCN and BMP-2, which finally results in the osteogenic differentiation of PDLSCs following the transfection and induction. Conversely, DANCR upregulation was shown to repress the osteogenic differentiation potential of PDLSCs. Conclusions: The osteogenic differentiation of PDLSCs has proven to related to the down regulation of lncRNA DANCR. And this paper throws light on the effects of DANCR in the process of PDLSCs’ osteogenic differentiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yu Ye ◽  
Yue Ke ◽  
Liu Liu ◽  
Tong Xiao ◽  
Jinhua Yu

The ability of human periodontal ligament stem cells (PDLSCs) to differentiate into osteoblasts is significant in periodontal regeneration tissue engineering. In this study, we explored the role and mechanism of circRNA FAT1 (circFAT1) in the osteogenic differentiation of human PDLSCs. The proliferation capacity of PDLSCs was evaluated by EdU and CCK-8 assay. The abilities of circFAT1 and miR-4781-3p in regulating PDLSC differentiation were analyzed by western blot, reverse transcription-polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP), and Alizarin red staining (ARS). A nucleocytoplasmic separation experiment was utilized for circFAT1 localization. A dual-luciferase reporter assay confirmed the binding relationship between miR-4781-3p and circFAT1. It was showed that circFAT1 does not affect the proliferation of PDLSCs. The osteogenic differentiation of PDLSCs was benefited from circFAT1, which serves as a miRNA sponge for miR-4781-3p targeting SMAD5. Both knockdown of circFAT1 and overexpression of miR-4781-3p suppressed the osteogenic differentiation of PDLSCs. Thus, circFAT1 might be considered as a potential target of PDLSCs mediated periodontal bone regeneration.


2019 ◽  
Author(s):  
Zhuo Wang ◽  
Yuanliang Huang ◽  
Luanjun Tan

Abstract Backgrounds: Long non-coding RNAs (lncRNAs) have been widely known to have an appreciable effect in physiology and pathology. In tooth regeneration, periodontal ligament stem cells (PDLSCs) are regarded as a key effector, whereas, how lncRNA acts in the osteogenic differentiation of PDLSCs haven’t been completely understood. This study aims to find out the relationship between lncRNA DANCR and the proliferation and osteogenic differentiation of PDLSCs. Results: Compared with the undifferentiated PDLSCs, the alizarin red staining level was higher in differentiated PDLSCs. And the expressions of osteogenic differentiation marker genes Runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and bone morphogenetic protein (BMP-2) were significantly increased in the differentiated PDLSCs. Furthermore, we noticed that comparing with control groups, the expression of LncRNA DANCR decreases markedly in osteogenically induced PDLSCs. DANCR promoted proliferation of PDLSCs, as evidenced by cell viability. Further investigation has proven that the downregulation of DANCR shows in the calcium sediment forming, alkaline phosphatase (ALP) activation and some osteogenic-related gene markers’ upregulation including Runx2, OCN and BMP-2, which finally results in the osteogenic differentiation of PDLSCs following the transfection and induction. Conversely, DANCR upregulation was shown to repress the osteogenic differentiation potential of PDLSCs. Conclusions: The osteogenic differentiation of PDLSCs has proven to related to the down regulation of lncRNA DANCR. And this paper throws light on the effects of DANCR in the process of PDLSCs’ osteogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document