scholarly journals Paraquat Modulates Immunological Function in Bone Marrow-Derived Macrophages

Author(s):  
Piyarat Srinont ◽  
Jaroon Wandee ◽  
Worapol Angwanich

Abstract Paraquat (PQ) is an herbicide commonly used worldwide. This herbicide is known to alter the human and animal immune systems. Many reports indicated that PQ impacts immune cell viability and functions. However, the underlying mechanism critical is still unknown. Therefore, the aim of this study was to evaluate effects of PQ on free radical production, oxidative stress, cell death, and pro-inflammatory gene expression of murine bone marrow-derived macrophages (BMDMs) from female C57BL/6NJcl mice in vitro. BMDMs were incubated with PQ at 0, 200, 400 µM for 24 h. Intracellular reactive oxygen species (ROS) production, apoptosis, cell viability, nitric oxide, inducible nitric oxide synthase (iNOS), and IL-6 expression of murine BMDMs were measured. The results revealed that PQ treatments led to decrease the cell viability and induced apoptotic cell death in a dose-dependent manner. Additionally, PQ induced reactive oxygen species (ROS) generation. The mRNA expression level of pro-inflammatory mediator gene IL-6 and inducible nitric oxide synthase (iNOS) were elevated, while the level of lipid peroxides (MDA) production was unaltered by PQ treatment. Interestingly, PQ led to a decrease in nitric oxide production depends on its concentration. These phenomena indicated that PQ increased cellular ROS production which induced apoptosis, and the herbicide triggers production of iNOS and IL-6 in murine BMDMs.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Lorena M Amaral ◽  
Ana Carolina T Palei ◽  
Lucas C Pinheiro ◽  
Jonas T Sertorio ◽  
Danielle A Guimaraes ◽  
...  

The pathophysiology of preeclampsia (PE) is not entirely known. However, increased oxidative stress possibly leading to impaired nitric oxide activity has been implicated in the critical condition. Increased oxidative stress with increased levels of highly reactive species including superoxide may generate peroxynitrite. We examined the role of inducible nitric oxide synthase (iNOS) and oxidative stress in the reduced uterine perfusion pressure (RUPP) preeclampsia experimental model. METHODS: RUPP was induced in wistar rats. Pregnant rats in the RUPP group had their aortic artery clipped at day 14 of gestation. After a midline incision, a silver clip (0.203 mm) was placed around the aorta above the iliac bifurcation; silver clips (0.100 mm) were also placed on branches of both the right and left ovarian arteries that supply the uterus. Sham-operated (pregnant control rats) and RUPP rats were treated with oral vehicle or 1 mg/kg/day 1400W (iNOS inhibitor) for 5 days. Mean arterial pressure (MAP) and plasma levels of thiobarbituric acid-reactive species (TBARS) and total radical-trapping antioxidant potential (TRAP) were measured determined. Aortic iNOS expression (Western blotting) and reactive oxygen species (ROS; assessed by fluorescence microscopy with dihydroethidium-DHE) were measured. We found increased mean arterial pressure in RUPP compared with pregnant control rats (MAP= 128±1 vs. 100±1.8 mmHg, respectively; P<0.05) and 1400W exerted antihypertensive effects (MAP= 114±2 vs.128±1 mmHg in RUPP treated and untreated rats, respectively; P<0.05). Higher reactive oxygen species (ROS) concentrations were found in RUPP compared with pregnant control rats (7.1±0.5 vs. 5.1±0.5 arbitrary units (A.U.), respectively; P<0.05) and 1400W decreased ROS production to 5.8±0.02 A.U. in RUPP treated rats, P<0.05. In addition, 1400W attenuated iNOS expression in RUPP rats (0.29±0.02 vs. 0.55±0.8 A.U. in RUPP treated and untreated rats, respectively; P<0.01) and had no effects on plasma TBARS and TRAP levels. Our results suggest that 1400w exerts antihypertensive effects in the RUPP model and suppresses ROS formation. Supported by FAPESP,Cnpq.


Sign in / Sign up

Export Citation Format

Share Document