scholarly journals IOT Based Soil Monitoring and Automatic Irrigation System

Author(s):  
Mohammad Shamiur Rahman Al Nahian ◽  
Arnab Piush Biswas ◽  
J. C. Tsou ◽  
Md. Hamidur Rahman

Abstract To serve the humanity nowadays technology is playing a wonderful role and a man’s basic and primary need is food indeed. It can be said that about more than 85% of people of Bangladesh are directly, indirectly depended on agriculture. Proper irrigation by water pump cannot be maintained due to frequent power outages, unavailability of grid lines in remote areas and scarcity/cost of fuel to run pumps. To make the sustainable irrigation system and field monitoring system for getting better crops growth as well as best production, this IOT based Automatic irrigation system is proposed. In this system IOT and WSN are used to control and monitor the irrigation system. IOT is used to obtain stored data monitoring and real time monitoring of various contents of soil. WSN is used to make a fully wireless system to make a user-friendly system to cultivate and irrigate water properly to the field. Different kinds of sensors are used. This report presents a fully automated drip irrigation system which is controlled and monitored by using “Thinkspeak Cloud Server”. Temperature and the humidity content of the soil are frequently monitored. The system informs user about any abnormal conditions like less moisture content and temperature rise, even concentration of water by sending notifications through the wireless module.

Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 671f-671
Author(s):  
M. Marutani ◽  
R. Quitugua ◽  
C. Simpson ◽  
R. Crisostomo

A demonstration vegetable garden was constructed for students in elementary, middle and high schools to expose them to agricultural science. On Charter Day, a University-wide celebration, students were invited to the garden on the University campus. The purpose of this project was twofold: (1) for participants to learn how to make a garden and (2) for visitors to see a variety of available crops and cultural techniques. Approximately 30 vegetable crops were grown. The garden also presented some cultural practices to improve plant development, which included weed control by solarization, mulching, a drip irrigation system, staking, shading and crop cover. Different types of compost bins were shown and various nitrogen-fixing legumes were displayed as useful hedge plants for the garden.


2019 ◽  
Vol 223 ◽  
pp. 105696 ◽  
Author(s):  
Lili Zhangzhong ◽  
Peiling Yang ◽  
Wengang Zhen ◽  
Xin Zhang ◽  
Caiyuan Wang

2019 ◽  
Vol 50 (4) ◽  
pp. 198-207
Author(s):  
Ioannis Gravalos ◽  
Avgoustinos Avgousti ◽  
Theodoros Gialamas ◽  
Nikolaos Alfieris ◽  
Georgios Paschalidis

Water supply limits and continued population growth have intensified the search for measures to conserve water in urban gardening and agriculture. The efficiency of water use is depended on performance of the irrigation technologies and management practices. In this study, a robotic irrigation system was developed that consists of a moving bridge manipulator and a sensor-based platform. The manipulator constructed is partly using open-source components and software, and is easily reconfigurable and extendable. In combination to the sensor-based platform this custommade manipulator has the potential to monitor the soil water content (SWC) in real time. The irrigation robotic system was tested in an experimental soil tank. The total surface of the soil tank was divided by a raster into 18 equal quadrants. The water management for maintaining water content in the soil tank within tolerable lower limit (refill point) was based on three irrigation treatments: i) quadrants whose SWC is below the refill point are irrigated; ii) quadrants are irrigated only when the daily mean SWC of the tank is below the refill point and only for those whose actual SWC is lower than that limit; and iii) quadrants are irrigated every two days with constant amount of water. A comparison of the results of the three irrigation treatments showed that the second treatment gave less irrigation events and less applied water. Finally, we could conclude that the performance of the fabricated robotic system is appropriate and it could play an important role in achieving sustainable irrigation into urban food systems.


2017 ◽  
Vol 4 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Valeria Palazzari ◽  
Paolo Mezzanotte ◽  
Federico Alimenti ◽  
Francesco Fratini ◽  
Giulia Orecchini ◽  
...  

This paper describes the design, realization, and application of a custom temperature sensor devoted to the monitoring of the temperature differential between the leaf and the air. This difference is strictly related to the plant water stress and can be used as an input information for an intelligent and flexible irrigation system. A wireless temperature sensor network can be thought as a decision support system used to start irrigation when effectively needed by the cultivation, thus saving water, pump fuel oil, and preventing plant illness caused by over-watering.


Sign in / Sign up

Export Citation Format

Share Document