scholarly journals Patch loaded slot antenna for super wideband applications with dual-band notch characteristic

Author(s):  
sachin agrawal ◽  
Zamir Wani ◽  
Manoj Singh Parihar

Abstract This paper presents a patch loaded slot antenna for super wideband (SWB) application. To obtain SWB characteristic, the proposed antenna geometry combined a rectangular slot and an overlying patch excited by a trident shaped microstrip feed. It is observed that the hybrid nature of the proposed antenna effectively enhances the impedance bandwidth up to 120%, by combining the resonance of both patch and slot. Besides, it is investigated that after converting the conventional tapered feed into the trident shape feed, the impedance bandwidth is increased further from 120% to 167% ranging between 1.25 to 15 GHz. Moreover, one U-shaped slot and two L-shaped stubs are inserted into the antenna design to introduce the dual-band rejection property from 1.8 to 2.4 GHz (GSM 1800, Wi-Fi 2.1 and 2.4) and 3.1 to 4.2 GHz (WiMAX and C-band). Further, to validate the simulation results a prototype is fabricated and tested. The measured result shows that the proposed antenna offered an impedance bandwidth of 170.3% from 1.2 GHz to 15 GHz.

2016 ◽  
Vol 9 (5) ◽  
pp. 1155-1161 ◽  
Author(s):  
Ailar Sedghara ◽  
Zahra Atlasbaf

A novel dual-band single-feed reconfigurable annular-ring slot antenna with polarization diversity is proposed. This antenna has the ability to switch frequency bands and polarization at the same time whereas applying a simple structure. It consists of two concentric circular slots and two tuning stubs on one side of the substrate and a 50 Ω microstrip feed line and two stubs on the other side. The proposed antenna can be switched between two resonant frequencies, 2.4 GHz (WLAN) and 3.5 GHz (Wimax). Furthermore, it can be switched between linear polarization (LP), left-hand circular polarization (LHCP), and right-hand circular polarization (RHCP) at the first frequency band, LHCP and RHCP at the second band. All these capabilities are achieved by applying only five PIN diodes on both sides of the substrate. Simulation and experimental results indicate that the proposed antenna demonstrates a good impedance bandwidth at the two frequency bands and satisfactory radiation pattern in five different states.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2017 ◽  
Vol 59 (11) ◽  
pp. 2848-2855 ◽  
Author(s):  
Chih-Kai Chang ◽  
Chi-Yuan Yao ◽  
Wen-Jiao Liao

2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 339-351
Author(s):  
Rohit Kumar Saini

Abstract A novel dual-band rectangular slot antenna is presented for dual-sense reconfigurable polarization. A W-shaped microstrip feedline and two rectangular parasitic patches are used to obtain dual-band circular polarization. Further, the feedline is modified so that the senses of polarization at the two bands are opposite. By introducing PIN-diodes in the feed lines, polarization can be switched among left-hand circular polarization (LHCP), right-hand circular polarization (RHCP), and linear polarization (LP). A prototype dual-band dual-sense antenna with f01 = 1.9 GHz and f02 = 3.45 GHz is fabricated in a 1.6 mm thick FR4 substrate. The measured circular polarized bandwidths are more than 7.6 % for the lower band and 5 % for the upper band.


Author(s):  
Jaswinder Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In the present work, a novel multistrip monopole antenna fed by a cross-shaped stripline comprising one vertical and two horizontal strips has been proposed for wireless local area network (WLAN)/Industrial, Scientific, and Medical band (ISM)/International Mobile Telecommunication (IMT)/BLUETOOTH/Worldwide Interoperability for Microwave Access (WiMAX) applications. The designed antenna has a small overall size of 20 × 30 mm2. The goal of this paper is to use defected ground structure (DGS) in the proposed antenna design to achieve dual-band operation with appreciable impedance bandwidth at the two operating modes satisfying several communication standards simultaneously. The antenna was simulated using Computer Simulation Technology Microwave Studio (CST MWS) V9 based on the finite integration technique (FIT) with perfect boundary approximation. Finally, the proposed antenna was fabricated and some performance parameters were measured to validate against simulation results. The design procedure, parametric analysis, simulation results along with measurements for this multistrip monopole antenna using DGS operating simultaneously at WLAN (2.4/5.8 GHz), IMT (2.35 GHz), BLUETOOTH (2.45 GHz), and WiMAX (5.5 GHz) are presented.


2015 ◽  
Vol 9 (2) ◽  
pp. 395-402 ◽  
Author(s):  
Swati Yadav ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

To restrict electromagnetic interference at WiMAX (3.3–3.7 GHz) and wireless local area network (WLAN) (5.15–5.825 GHz) bands operating within ultra wide bandwidth (UWB) band, a novel design of lamp-shaped UWB microstrip antenna with dual band-notched characteristics is presented. The proposed antenna is composed of a lamp-shaped radiating patch with two rectangular ground planes on both the sides of the radiator with the gap of 0.57 mm. To improve impedance mismatch at middle frequencies, two triangular strips one at each of the ground plane are added; whereas a rectangular slot is etched in the radiating patch to remove impedance mismatch at higher frequencies of the UWB band. Furthermore, an L-shaped slot in the radiator and two L-shaped slots in the ground plane are used to restrict electromagnetic interference (EMI) at WiMAX and WLAN bands, respectively, without affecting the electrical performance of the UWB antenna. Effects of the key parameters on the frequency range of the notched bands are also investigated. The proposed design shows a measured impedance bandwidth of 12.5 GHz (2.7–14.4 GHz), with the two band-notched bands of 3.0–3.9 and 4.9–5.8 GHz. The antenna is suitable to be integrated within the portable UWB devices without EMI interference at WiMAX and WLAN bands.


Sign in / Sign up

Export Citation Format

Share Document